Wie Transfer-RNAs zurechtgeschnitten werden

Wissenschaftspreis der Stadt Ulm 2003

16.07.2003

In allen Lebewesen übersetzen die Transfer-RNAs (tRNAs) die in der DNA in Form des genetischen Codes gespeicherte Information in die Proteine (Eiweiße). Die tRNAs werden zunächst als größere Moleküle (Vorläufer-Moleküle) synthetisiert, aus denen die funktionsfähigen tRNAs erst durch die sogenannte Prozessierung herausgeschnitten werden müssen. Für die Entdeckung der molekularen Schere, die die tRNA am vorderen Ende aus dem Vorläufer herausschneidet, die RNase P, gab es vor mehr als zwanzig Jahren den Nobelpreis. Die Schere für das Herausschneiden am "hinteren Ende", die RNase Z, wurde jahrelang vergeblich gesucht. In der Abteilung Molekulare Botanik (Leiter Prof. Dr. Axel Brennicke) der Universität Ulm konnte diese RNase Z jetzt erstmalig isoliert werden. Ausgehend von der aus Weizenkeimlingen aufgereinigten RNase-Z-Proteinsequenz identifizierten PD Dr. Anita Marchfelder und Mitarbeiter die entsprechenden RNase-Z-Gene in Pflanzen und Archaea. Ähnliche Proteine konnten dann in allen organismischen Reichen gefunden werden: von den urtümlichen Archaea über die Bakterien bis zu den Tieren und Menschen. Interessanterweise gibt es kurze und lange Versionen von diesen Proteinen. Die langen Versionen sind gut doppelt so lang wie die kurzen und treten nur bei den mehrzelligen Organismen, den Eukaryonten auf. Wahrscheinlich sind die langen Proteine im Laufe der Evolution durch Verdopplung der kurzen Proteine entstanden. Das menschliche RNase-Z-Protein wurde in der jüngeren Vergangenheit mit dem Auftreten von Krebs in Zusammenhang gebracht; es kann jetzt über die in Ulm definierte Funktion als RNase Z gezielt untersucht werden. Dr. Marchfelder und Arbeitsgruppe erforschen diese lebenswichtigen Proteine speziell in Pflanzen und Archaea. Die einzelligen Archaea sind erst 1977 als eigenständiges Organismen-Reich neben den Bakterien und den Eukaryonten definiert worden. Archaea leben vorwiegend an Orten mit Extrembedingungen wie sehr hohen Temperaturen (bis zu 113 °C), sehr hohem Druck und extrem hohen Salzkonzentrationen. Sie werden unter anderem in Salzseen (z.B. dem Toten Meer) und den heißen Quellen des Yellowstone National Parks angetroffen. Bisher war völlig unklar, wie Archaea die tRNA-Enden herstellen. Marchfelder fand jetzt heraus, daß die einzelligen Archaea wie die höheren Organismen die tRNAs ausschließlich mit der RNase Z zurechtschneiden, ganz anders als die anderen Einzeller, die Bakterien. Beispielhaft werden die Details der tRNA-Prozessierung an dem halophilen (salzliebenden) Archaeon Haloferax volcanii untersucht. Anhand seiner RNase Z wollen die Forscher herausfinden, wie dieses Protein bei den hohen intrazellulären Salzkonzentrationen, bei denen normale Eiweiße verklumpen, funktionsfähig bleibt. In Pflanzen wurden vier verschiedene Gene für die RNase Z gefunden, die für zwei kurze und zwei lange Formen des Proteins kodieren. Dr. Marchfelder untersucht jetzt zusammen mit Dr. Stefan Binder (Abteilung Molekulare Botanik) in der Modellpflanze Arabidopsis thaliana (Ackerschmalwand), wozu die Pflanze vier RNase-Z-Enzyme braucht. Möglichwerweise sind die vier Enzyme in verschiedenen Teilen der Pflanzenzelle aktiv, in Kern, Zytoplasma, Mitochondrium und Chloroplast. Vielleicht agieren die einzelnen Proteine in unterschiedlichen Geweben (Blättern, Blüten, Wurzeln). Auch wäre es denkbar, daß die vier Proteine unterschiedliche Funktionen haben und neben tRNAs andere wichtige RNA-Typen zurechtschneiden. Bisherige Analysen haben gezeigt, daß Bakterien für die Herstellung des "hinteren" tRNA-Endes keine Schere benutzen. Jedoch wurde in den Bakterien Escherichia coli und Bacillus subtilis ein Protein entdeckt, das der RNase-Z-Schere ähnlich ist. Warum haben Bakterien eine RNase Z? In Zusammenarbeit mit dem European Molecular biology Laboratory (EMBL Outstation Hamburg) und dem Centre National de la Recherche Scientifique (CNRS, Paris) will Marchfelder die Funktion der bakteriellen Scheren aufklären. Sowohl in der Fruchtfliege (Drosophila melanogaster) als auch in der Bäckerhefe (Saccharomyces cerevisiae) gibt es nur jeweils eine einzige RNase-Z-Schere, im Gegensatz zu den Pflanzen mit vier RNase-Z-Scheren. Zusammen mit der Abteilung Genetik der Universität Warschau untersucht die Ulmer Gruppe die RNase Z der Bäckerhefe. In diesem Organismus ist es relativ leicht, die genetische Information in der Zelle zu manipulieren, um Details über die biologische Funktion des Enzyms herauszufinden. In Kooperation mit dem Dartmouth College, Hanover, USA, und dem York College, New York, analysieren Marchfelder und Mitarbeiter die Funktion der RNase Z in der Fruchtfliege. Dabei gelang es den Forschern, die Herstellung der RNase Z in Fruchtfliegenzellen fast vollständig zu unterdrücken. Das Resultat war eine Anhäufung von tRNA-Molekülen, die am hinteren Ende nicht geschnitten waren. Diese Ergebnisse zeigen, daß die RNase Z in der Fruchtfliege - wie in Archaea - für das Schneiden des "hinteren" tRNA-Endes essentiell ist. Mit der Identifizierung der RNase Z auf molekularer Ebene ist der Zugang zu einem bisher ungeklärten grundlegenden Prozeß in der Molekularbiologie möglich geworden.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Kampf gegen Krebs: Neueste Entwicklungen und Fortschritte