Lebenswichtiges Metall – wie wird Molybdän biologisch nutzbar?

Mechanismus der Molybdän-Insertase aufgeklärt

30.07.2021 - Deutschland

Das Metall Molybdän ist als Bestandteil von Molybdän-Stahl oder auch als Molybdänsulfid, einem Additiv von Motorölen, bekannt. Neben diesen technischen Anwendungen hat Molybdän allerdings auch eine wichtige biologische Funktion: In der Zelle kommt es als Bestandteil des sogenannten Molybdäncofaktors vor. Kommt es zu Mutationen in einem für die Biosynthese des Molybdäncofaktors wichtigen Enzym, der sogenannten Molybdän-Insertase, hat dies drastische und schließlich tödliche Folgen für den betroffenen Patienten. Ein Team von Wissenschaftlerinnen und Wissenschaftlern um Dr. Tobias Kruse von der Technischen Universität Braunschweig hat nun herausgefunden, wie die Molybdän-Insertase Molybdän in den Molybdäncofaktor einbaut und damit die Grundlage für einen Therapieansatz geschaffen. Die Ergebnisse der Untersuchungen wurden jetzt im Journal „Nature Chemistry“ veröffentlicht.

Tobias Kruse/Hintergrund istock.com/davidf

Molybdän ist ein Metall, das für viele technische Anwendungen benötigt wird. In der Zelle kommt es in Form des Molybdäncofaktors vor, dessen Vorstufe hier farbig dargestellt wird. Der Mechanismus, durch den Molybdän in diese Vorstufe eingebaut wird, war lange Zeit unbekannt.

Der Molybdäncofaktor setzt sich – vereinfacht gesagt – aus einer organischen und einer anorganischen Komponente, dem Molybdän, zusammen. Während die Biosynthese der organischen Komponente gut verstanden ist, war es lange Zeit unklar, wie das Molybdän in die organische Komponente „eingebaut“ wird.

Um das herauszufinden, haben die Wissenschaftlerinnen und Wissenschaftler im Team von Dr. Tobias Kruse an der TU Braunschweig ein Arbeitsmodell erstellt, dem eine bestimmte Patientenmutation in der Molybdän-Insertase zugrundeliegt. Die Molybdän-Insertase ist dann defekt. Das Metall Molybdän kann also nicht mehr in Form des Molybdäncofaktors für den Körper nutzbar gemacht werden. Betroffene Patientinnen und Patienten entwickeln im Mittel innerhalb von 24 Stunden nach der Geburt epilepsie-ähnliche Anfälle. Es kommt im Folgenden zum massiven Absterben von Nervenzellen, was letztlich dazu führt, dass Betroffene im Mittel im Alter von drei Jahren versterben. Diese Krankheit wird als Molybdäncofaktor-Defizienz bezeichnet und ist bislang nur schlecht behandelbar.

Der „Nachbau“ der Mutation in der defekten Molybdän-Insertase des Patienten war dann für Dr. Tobias Kruse und seine Kolleginnen und Kollegen die Basis für die folgenden Forschungsarbeiten. In Kooperation mit Professor Douglas C. Rees am California Institute of Technology (USA) wurde die Proteinstruktur der Molybdän-Insertase aufgeklärt, wodurch ein neuer, bis jetzt unbekannter Schritt im Biosyntheseweg des Molybdäncofaktors entdeckt wurde. In Kooperation mit Professor Martin L. Kirk (Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, USA), gelang es dann den Mechanismus der Molybdän-Insertion, also den Prozess, wie Molybdän in die organische Komponente des Molybdäncofaktors eingebaut wird, aufzuklären.

Vor rund 20 Jahren wurde der Mechanismus der Molybdän-Insertion bereits beschrieben, allerdings für die Synthese von künstlichen Molybdän-Modellverbindungen, die die lebenswichtige Funktion des Molybdäncofaktors „im Reagenzglas“ nachbilden können. Die Forschenden konnten jetzt erstmals zeigen, dass der letzte Schritt der Molybdäncofaktor-Biosynthese in der Zelle dem gleichen Schema wie die Synthese von Molybdän-Modellverbindungen im Chemie-Labor folgt. Inzwischen ist bekannt, dass dieser Mechanismus nicht nur der humanen, sondern auch der pflanzlichen und pilzlichen Molybdän-Insertion zugrunde liegt. Dies weist darauf hin, dass dieser Prozess schon sehr früh in der Evolution der Lebewesen entstanden ist.

Der wichtigste Aspekt dieser Arbeit ist aber zweifelsohne von einem der Fachgutachter der nun veröffentlichen Arbeit in „Nature Chemistry“ benannt worden: Mit dem Wissen um die mechanistischen Details, wie Molybdän in der Zelle funktionalisiert – also biologisch nutzbar gemacht – wird, sind nun die Grundlagen dafür geschaffen, die fehlende Molybdän-Insertase-Aktivität bei betroffenen Patientinnen und Patienten auszugleichen. Geeignete Modellverbindungen wurden und werden bereits in der Gruppe von Prof. Carola Schulzke (Universität Greifswald) entwickelt und synthetisiert und sollen an der TU Braunschweig näher auf eine Anwendbarkeit für eine Therapie der Molybdäncofaktor-Defizienz charakterisiert werden.

 

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Life Sciences?