13.06.2019 - Universität Bayreuth

„Mikro-Origami“: Künstliche Blutgefäße durch 4D-Druck und molekulare Selbstorganisation

Feinstrukturierte Blutgefäße werden in Zukunft möglicherweise im Druck hergestellt werden können. Die Grundlagen hierfür erforscht der Chemiker und Materialwissenschaftler Prof. Dr. Leonid Ionov mit einer Arbeitsgruppe an der Universität Bayreuth. Das Ziel: Dünne Polymerschichten sollen so strukturiert werden, dass durch eine räumliche Selbstorganisation ihrer Moleküle Gefäße in den verschiedensten Größen und Strukturen entstehen. Ein 4D-Drucker, der die Zeit als vierte Dimension einbezieht, soll die Schichten erzeugen und in die nötigen Ausgangspositionen bringen. Das kürzlich gestartete Vorhaben wird von der VolkswagenStiftung aus dem Programm „Experiment!“ mit 120.000 Euro gefördert.

Die Förderinitiative „Experiment!“ der VolkswagenStiftung unterstützt die Startphase von Projekten, die unkonventionelle Forschungsideen, Methoden oder Technologien erproben oder völlig neue Forschungsrichtungen einschlagen. Dabei ist allen Beteiligten bewusst, dass ein Erfolg einerseits ungewiss ist, andererseits aber eine wertvolle Grundlage für künftige Innovationen darstellen würde.

„Trotz der enormen Fortschritte in der Implantationsmedizin gibt es für die Herausforderung, feinste Blutgefäße mit hoher Präzision in den jeweils benötigten Strukturen herzustellen, noch keine befriedigende Lösung. In unserem Projekt verfolgen wir daher einen neuen Ansatz, der zwei wissenschaftliche Arbeitsgebiete kombiniert: Die Polymerwissenschaften erforschen die Fähigkeit von Molekülen, sich unter definierten Bedingungen in neuen räumlichen Strukturen zu organisieren, und haben dabei beeindruckende Resultate erzielt. Parallel dazu sind Techniken und Anwendungen des 4D-Drucks zunehmend verfeinert worden. Deshalb wollen wir jetzt Polymerschichten drucken, die so strukturiert sind und miteinander wechselwirken, dass daraus von selbst Gefäßstrukturen entstehen, wie sie in der Medizin benötigt werden“, sagt Projektleiter Ionov.

Charakteristisch für Blutgefäße sind sogenannte „Kreuzungen“, bei denen sich zwei Gefäße zu einem neuen Gefäß verbinden. Diese Strukturelemente können mit den bisherigen Techniken des 3D-Drucks nicht mit der nötigen Präzision reproduziert werden. Indem die Bayreuther Forscher die Druck-Programmierung nicht nur auf räumliche Strukturen, sondern auch auf die Zeit als vierte Dimension ausrichten, wollen sie eine molekulare Selbstorganisation ermöglichen, die solche Kreuzungen erzeugt – ohne dass die Verbindungen zwischen den jeweiligen Gefäßen undicht sind. Die Wissenschaftler bezeichnen ihr Vorhaben auch als „Mikro-Origami“. Der Name spielt auf die japanische Faltkunst an, die allein durch die in ihrer zeitlichen Abfolge definierten Papierfaltungen die unterschiedlichsten Figuren und Muster hervorbringt.

Das von der VolkswagenStiftung geförderte Projekt will zunächst ergründen, ob der neue Ansatz zur künstlichen Herstellung feinstrukturierter Blutgefäße prinzipiell in der angestrebten Weise funktioniert. Deshalb geht es zurzeit noch nicht um die Frage, welche polymeren Materialien für Anwendungen im lebenden Organismus optimal geeignet sind. Wenn sich die Forschungsarbeiten als erfolgreich erweisen, stehen die Bayreuther Wissenschaftler vor einer weiteren Herausforderung: polymere Materialien zu finden, die nicht allein die nötigen Potenziale zur Selbstorganisation aufweisen, sondern auch im Organismus keine Abstoßungsreaktionen oder Infektionen hervorrufen.

Fakten, Hintergründe, Dossiers
Mehr über Uni Bayreuth
  • News

    Ein genetischer Nano-Baukasten für neue Biomaterialien

    Magnetbakterien können zur Herstellung neuartiger Biomaterialien genutzt werden. Ein Team von Mikrobiologen an der Universität Bayreuth unter der Leitung von Prof. Dr. Dirk Schüler hat mit diesem Ziel erstmals ein Baukasten-System entwickelt, das die genetische Umprogrammierung der Bakterie ... mehr

    Selbstheilungsprozessen auf der Spur

    Planarien sind Würmer mit der außergewöhnlichen Eigenschaft, zerstörte oder abgetrennte Teile ihres Körpers wiederherstellen zu können. Schon länger ist bekannt, dass eine besondere Gruppe von Proteinen – sie werden als PIWI-Proteine bezeichnet – für diese Regenerationsfähigkeit unverzichtb ... mehr

    Mit Blaulicht zur RNA-Kontrolle

    Boten-RNA-Moleküle enthalten Erbinformationen und steuern damit die Synthese von Proteinen in lebenden Zellen. Biochemiker der Universitäten Bayreuth und Bonn haben jetzt einen Weg entdeckt, diesen für die Genexpression zentralen Vorgang zu regulieren: In bestimmten Actinobakterien kommt ei ... mehr