Möglicher Ur-Stoffwechsel in Bakterien entdeckt

22.03.2019 - Deutschland

Mikroorganismen haben die bemerkenswerte Fähigkeit, aus fast jeder chemischen Reaktion Energie zu gewinnen, solange sie einen Bruchteil der zellinternen „Energiewährung“ ATP liefert. Dies gelingt ihnen selbst in unwirtlichster Umgebung. Nun hat ein Konsortium aus Umweltmikrobiologen des Leibniz-Instituts DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen in Braunschweig, der Universität Konstanz und der Universität Tübingen entdeckt, dass Mikroorganismen die Bildung des Minerals Pyrit aus Eisensulfid und Schwefelwasserstoff katalysieren können. Dieser Prozess läuft seit Anbeginn der Erdgeschichte in Sedimenten und Tiefsee-Hydrothermalquellen ab und wurde als erster energieliefernder Prozess für die Entstehung von Leben postuliert.

Pyrit, besser als Katzengold bekannt, ist das häufigste Eisen-Schwefel-Erz unserer Erde. Pro Jahr werden schätzungsweise fünf Millionen Tonnen Pyrit hauptsächlich in marinen Sedimenten gebildet. Über geologische Zeiträume und komplexe biogeochemische Mechanismen führte dies zu einer Stabilisierung des heutigen Sauerstoffgehalts in der Luft. Gleichzeitig ist bekannt, dass Pyrit bereits auf der Ur-Erde in marinen Hydrothermalquellen gebildet wurde, die derzeit als die wahrscheinlichste Wiege des Lebens angenommen werden. Hier wird die Pyritbildung als der entscheidende energieliefernde Prozess für einen autokatalytischen Stoffwechsel diskutiert, aus dem später Leben hervorging. Bisher war die Pyritbildung als ein rein (geo-)chemischer Prozess bekannt. Doch jetzt hat das Forscherteam entdeckt, dass auch Bakterien aus der Umwandlung von Eisensulfid und Schwefelwasserstoff zu Pyrit Energie zum Leben gewinnen können. Dies haben Professor Michael Pester vom Leibniz-Institut DSMZ zusammen mit Joana Thiel sowie Professor Bernhard Schink von der Universität Konstanz und Dr. James M. Byrne sowie Professor Andreas Kappler von der Universität Tübingen unter Laborbedingungen genauer untersucht.

Die Wissenschaftler reicherten unter Sauerstoffausschluss Umweltmikroorganismen aus verschiedenen Sedimenten und Kläranlagen an, wobei sie die chemischen Verbindungen Eisensulfid, Schwefelwasserstoff und Kohlendioxid als einzige Substrate anboten. Mithilfe modernster Messmethoden konnten die Wissenschaftler feststellen, dass daraus Pyrit sowie Methan gebildet wurden. Dies geschah allerdings nicht über Nacht, sondern über sehr lange Zeiträume von mehreren Monaten bis zu einem halben Jahr, was auf die magere Energieausbeute aus diesem Prozess schließen lässt. Dabei waren die Prozesse der Pyrit- und Methanbildung eng miteinander verwoben und voneinander abhängig. Interessanterweise zeigten die Anreicherungen aus Kläranlagen die höchsten Aktivitäten und können jetzt als Modellsystem für die Entschlüsselung dieses wahrscheinlich sehr alten Stoffwechsels herangezogen werden, der auch heute noch Mikroorganismen, die tief in marinen Sedimenten begraben sind, vor dem Hungertod rettet.

DSMZ/Prof. Dr. Michael Pester

Elektronenmikroskopische Aufnahme einer Pyrit-bildenden Anreicherungskultur aus Kläranlagen, in der die Mikroorganismen in rot und Pyritkristalle in gelb hervorgehoben wurden.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Kampf gegen Krebs: Neueste Entwicklungen und Fortschritte