Stickstoffmonoxid geht im Körper andere Wege als bislang vermutet

Forschungen in Gießen, Würzburg und San Diego zeigen das - Publikation in "Nature Cell Biology" im April

04.04.2002
Das Gas Stickstoffmonoxid (NO) hat im Körper des Menschen an vielen Stellen wichtige Funktionen: Es entspannt die glatte Muskulatur, erweitert die Blutgefäße oder wirkt der Entstehung von Blutgerinnseln entgegen. Für die Entdeckung der Bedeutung von NO im Herz- Kreislaufsystem wurde 1998 der Medizin-Nobelpreis verliehen. Die bislang verbreitete Vorstellung über die Arbeitsweise dieses Botenstoffs muss nun ergänzt werden. Das haben Wissenschaftler der Universitäten Gießen und Würzburg herausgefunden. Ihre Ergebnisse stellen sie in der Zeitschrift "Nature Cell Biology" im April vor. Es ist nicht verwunderlich, dass Forscher genau wissen wollen, wie NO im Körper wirkt - schließlich kommt dieses Gas für die Behandlung von Krankheiten in Betracht. Ein Beispiel: Ein Herzpatient bekämpft seine Angina pectoris mit einem "Nitrospray". Aus diesem Mittel wird in seinem Körper NO freigesetzt. Die Herzkranzgefäße erweitern sich, das Engegefühl in der Brust verschwindet. Die Forschung kann umso gezielter Medikamente entwickeln, je besser sie die Abläufe im Organismus kennt. Was das Stickstoffmonoxid betrifft, so herrschte bisher folgende Überzeugung vor: NO wird auch vom Körper selbst gebildet und kann - als Gas - problemlos durch die Zellmembranen hindurchtreten, um im Inneren der Zellen seinen Wirkort zu erreichen. Dieser wird aktiviert und erhöht darauf hin die Konzentration eines zweiten Botenstoffes (cGMP) der Zelle. Dadurch werden Prozesse angestoßen, die letztlich für die spezifische Wirkung von NO verantwortlich sind. Allerdings gab es bereits Hinweise darauf, dass dieses klassische Konzept nicht ganz richtig sein kann, etwa die Tatsache, dass Stickstoffmonoxid in einer Zellmembran besser löslich ist als im Zellinneren. Auch theoretische Überlegungen sprachen eigentlich gegen eine Diffusion von NO durch mehrere Zellschichten, wie dies aber beispielsweise für eine Blutgefäßwand notwendig sein müsste. Darum beschlossen Prof. Dr. Harald Schmidt, Rudolf-Buchheim-Institut für Pharmakologie der Justus-Liebig-Universität Gießen, und seine Arbeitsgruppe in Gießen und Würzburg zusammen mit Kollegen aus San Diego, das Konzept der Wirkungsweise von NO zu überprüfen. Die Forschergruppen fanden heraus, dass der NO-Rezeptor, die lösliche Guanylylcyclase (sGC), keineswegs ein rein lösliches Protein ist, wie man seit mehr als 20 Jahren meinte. Stattdessen ist der Rezeptor in vielen Zellverbänden von Mensch und Tier - etwa in der Blutgefäßwand, im Herzmuskel und in Blutplättchen - zumindest teilweise mit der Zellmembran verbunden. Dort befindet er sich in unmittelbarer Nachbarschaft zu den Enzymen, die NO produzieren. Diese räumliche Nähe ist sinnvoll, weil NO instabil ist und auf diese Weise schnell sein Ziel erreicht. Außerdem fanden die Forscher heraus, dass der mit einer Membran verknüpfte Rezeptor viel empfindlicher auf NO reagiert als der lösliche Rezeptor und die Anbindung an die Zellmembran reguliert wird. Die Arbeiten werden im Rahmen des Gießener Sonderforschungsbereichs "Kardiopulmonales Gefäßsystem" (SFB 547, Sprecher: Prof. Dr. Werner Seeger) gefördert, dessen stellvertretender Sprecher Prof. Harald Schmidt ist. Der Artikel "Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide" von Ulrike Zabel, Christoph Kleinschnitz, Oh Phil, Pavel Nedvedsky, Albert Smolenski, Helmut Müller, Petra Kronich, Peter Kugler, Ulrich Walter, Jan E. Schnitzer und Harald H. H. W. Schmidt, wurde in der Online-Version von "Nature Cell Biology" vorab bereits im März 2002 publiziert. In gedruckter Form wird er jetzt im April erscheinen.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Kampf gegen Krebs: Neueste Entwicklungen und Fortschritte