Die Ruhe vor der Teilung und ein Taktstock namens NIPA

Münchner Forscher entdecken neuen Mechanismus der Zellteilung

18.07.2005

Der Zellforscher Justus Duyster, Professor im Münchener Klinikum rechts der Isar, hat einen wichtigen Regulationsmechanismus der Zellteilung entschlüsselt. Seine Entdeckung wird in der renommierten Fachzeitschrift "Cell" veröffentlicht. Dieses Grundlagenwissen könnte dazu beitragen, neue Therapien für Erkrankungen wie beispielsweise Krebs zu entwickeln. Die Ruhe vor der Teilung Einer der wichtigsten Prozesse in unserem Körper gibt nach wie vor Rätsel auf: die Zellteilung. Sie wiederholt sich im Laufe unseres Lebens mehrere Billiarden-mal. Sie sorgt dafür, dass aus einer befruchteten Eizelle ein Mensch entsteht, dass ausgefallene Haare nachwachsen und sich Wunden schließen. Die Kontrolle der Zellteilung unterliegt einem komplexen molekularen Prozess. Zwei Moleküle halten die fragile Balance aus Zellruhe und Zellteilung aufrecht: die Cyclin-abhängigen Kinasen (CDKs) und die Cycline. Kommt es zu einer Störung der Balance, gerät die Zelle außer Kontrolle: Es droht die ungehemmte Zellwucherung - Krebs. Vor vier Jahren erhielten Hartwell, Hunt und Nurse für die Entschlüsselung dieser grundlegenden Mechanismen der Zellteilung den Nobelpreis. Sie beschrieben den Zusammenhang zwischen Cyclin-abhängigen Kinasen (CDKs) und Cyclinen. Die CDKs sind dabei das Orchester, das die Zellen der Partitur entsprechend durch die verschiedenen Phasen der Zellteilung treibt. Die Cycline stellen den Dirigenten, der den Takt vorgibt, die Lautstärke regelt und hin und wieder eine Pause ausruft. Dabei sind gerade die Ruhephasen wichtig für eine erfolgreiche Zellvermehrung. Ein Taktstock namens NIPA Auf der Basis dieser Erkenntnisse fahnden Forscher in aller Welt weiter an der Aufklärung der Zellteilung. Nun fügten das Team von Prof. Justus Duyster im Klinikum rechts der Isar dem unvollständigen Bild der Zellteilung ein neues wichtiges Mosaiksteinchen hinzu. Sie entdeckten sozusagen den Taktstock des Dirigenten. Um eine Ruhephase aufrechtzuerhalten und die Zellteilung zu unterbinden, baut die Zelle einen Molekülkomplex auf, SCFNIPA genannt, der jegliche Teilungsaktivität blockiert. Soll eine Zellteilung eingeleitet werden, "montiert" die Zelle den Molekülkomplex wieder ab. Eine Pause, so entdeckten die Forscher, entsteht, indem die Menge des Enzyms Cyclin B1 heruntergeregelt und damit verhindert wird, dass Cyclin B1 das Enzym CDK 1 aktiviert: das Orchester bleibt stumm. Sind NIPA und SCF getrennt, steigt der Cyclin-Spiegel wieder. Dies geschieht genau in der Phase, in der die Zelle ihre DNA verdoppelt und damit die wichtigste Voraussetzung für eine erfolgreiche Zellteilung schafft. Grundlagen für neue Therapien Blockiert man NIPA*, gerät das Orchester aus dem Takt. Cyclin B häuft sich in Übermenge im Zellkern an und leitet eine verfrühte Zellteilung ein. "Wenn sich die Zelle teilt bevor die DNA vollständig verdoppelt und für den Transport in die Tochterzellen vorbereitet ist, könnten daraus zwei abnormale Zellen entstehen", erklärt Dr. Florian Bassermann, Erstauter der Studie, die morgen in der Fachzeitschrift "Cell" veröffentlicht wird. Prof. Duyster sieht hier einen potentiellen Erklärungsmechanismus für die Entstehung von Krebs. "Möglicherweise ist in einer Krebszelle NIPA aufgrund einer Mutation oder eines anderen chemischen Prozesses nicht mehr aktiv. Um das herauszufinden, möchten wir den NIPA-Status in verschiedenen Tumorgeweben untersuchen." Sollte sich herausstellen, dass bei einer oder mehreren Krebsarten der Mangel an NIPA eine entscheidende Rolle spielt, könnten neue Strategien in der Krebsbehandlung entwickelt werden.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Kampf gegen Krebs: Neueste Entwicklungen und Fortschritte