21-Aug-2014 - Max-Planck-Institut für Pflanzenzüchtungsforschung

Researchers block plant hormone

A small molecule inhibits jasmonic acid and helps to explain its effects

Researchers trying to get new information about the metabolism of plants can switch off individual genes and study the resulting changes. However, Erich Kombrink from the Max Planck Institute for Plant Breeding Research in Cologne and Markus Kaiser from the University of Duisburg-Essen adopt a different approach. They identify small molecules that block specific components of the metabolic process like brake pads and prevent the downstream reactions. In their search for these molecules, they use a biological selection process involving intact plants. This strategy has long been exploited in drug research. Its application in the plant sciences, however, is relatively new.

Kombrink, Kaiser and their colleagues have identified a molecule that interferes with the effect of jasmonic acid. This plant hormone influences flower formation, root growth, defence against herbivores and infections, wound healing, ageing of plants, and much more.

Although many questions about plant metabolism can be answered through targeted gene mutations, the method has its limits. This is also demonstrated in the case of jasmonic acid and its derivatives. So far, only one signalling chain has been discovered, but this cannot explain the wide-ranging effect of this plant hormone. Therefore, other hitherto undiscovered signalling paths and action mechanisms must exist. To find out more about them, Kombrink and Kaiser have adopted an approach that is similar to one used in medicine. Their strategy is based on the blocking of important metabolic pathways using low molecular weight compounds, which are easily assimilated by the plant. While in medical therapy such compounds are assimilated through the blood, in the plant they are introduced through the root.

The scientists embarked on their search with a screening of Arabidopsis thaliana and treating the plants with compounds in such a way that the desired selection could be identified by a conspicuous trait. Of the 1728 substances from a commercial compound library tested 16 emerged as inhibitors. This number was further reduced using more selective tests. In the end, only one substance turned out to be a specific inhibitor of the jasmonic acid signalling pathway and was given the name Jarin-1. “In terms of its basic structure, the substance is a plant alkaloid, whose two amino groups can carry different side chains,” Kombrink explains. “However, its effect is associated with a particular side chain in one of the positions. Other side chains impair the activity of the substance. We also deliberately synthesised it once again to be certain that we had understood its chemical structure correctly.”

The scientists also looked for the target of the newly discovered inhibitor. The known signalling chain starts with the conjugation of the jasmonic acid with the amino acid isoleucine by an enzyme called JAR1. The resulting pair leads to the expression – following various detours – of the genes necessary for the relevant effect of the jasmonic acid. Kombrink and Kaiser were able to show that JAR1 is the target of the newly discovered inhibitor. Due to the inhibition, the jasmonic acid conjugated with isoleucine does no longer accumulate in the cell. As a result genes are not expressed because the jasmonic acid–isoleucine pair no longer activates the genes’ starting point.

The Jarin-1 inhibitor identified by Kombrink and Kaiser not only works in Arabidopsis but also in Cardamine hirsuta or hairy bittercress. “So we are obviously dealing with a broadly applicable molecule,” comments Kombrink. Under the effect of the inhibitor, the plants show the same features as they do following the targeted mutation of genes from the jasmonic acid signalling pathway.

The scientists also investigated the exact location where the molecule takes effect. They succeeded in demonstrating that it binds to the active centre of JAR1 and inhibits the natural substrate. “Our molecule is not a classical competitive inhibitor,” says Kombrink. “But its effect can be explained, at least in parts, by displacement of the substrate from its binding site.”

Small molecules are interesting new tools for plant research. Through their work, the researchers show how it is possible to search for them systematically and to identify their molecular mode of action.

Facts, background information, dossiers
More about MPI für Pflanzenzüchtungsforschung
More about Max-Planck-Gesellschaft
  • News

    Circular RNA makes fruit flies live longer

    Ribonucleic acid, or RNA, is part of our genetic code and present in every cell of our body. The best known form of RNA is a single linear strand, of which the function is well known and characterized. But there is also another type of RNA, so-called “circular RNA”, or circRNA, which forms ... more

    Neandertal genes in the petri dish

    Protocols that allow the transformation of human induced pluripotent stem cell (iPSC) lines into organoids have changed the way scientists can study developmental processes and enable them to decipher the interplay between genes and tissue formation, particularly for organs where primary ti ... more

    The relationship of proteins

    Proteins control life as one of the most important biomolecules - as enzymes, receptors, signal or structural building blocks. Researchers at the Max Planck Institute (MPI) of Biochemistry have for the first time uncovered the proteomes of 100 different organisms. The selected specimens com ... more

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. more

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? more

    Chaperones - folding helpers in the cell

    Nothing works without the correct form: For most proteins, there are millions of ways in which these molecules, composed of long chains of amino acids, can be folded - but only one way is the right one. Researchers in the department "Cellular Biochemistry" at the Max Planck Institute for Bi ... more

  • Research Institutes

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    The research institutes of the Max Planck Society perform basic research in the interest of the general public in the natural sciences, life sciences, social sciences, and the humanities. In particular, the Max Planck Society takes up new and innovative research areas that German universiti ... more

More about Uni Duisburg-Essen
  • News

    Potential Beginning of Life Simulated in Lab

    Scientists at University of Duisburg-Essen (UDE) have substantiated their theory that first life could have begun deep in the earth's crust. In their experiments, structures that were inanimate developed survival strategies within a short time. In the beginning there was the vesicle: A self ... more

    Phagocytes versus killer cells

    They are first class at fighting infections. However, neutrophils, specialized phagocytic white blood cells of the immune system, can also promote the growth of cancer. A research team led by Professor Sven Brandau from the Ear, Nose and Throat Clinic of the University Hospital Essen (UK Es ... more

    Agilent and University of Duisburg-Essen Announce Collaboration Agreement

    Agilent Technologies Inc. and the University of Duisburg-Essen has formed a collaboration agreement that brings together Agilent's leading analytical technologies with the University's outstanding researchers. As part of the collaboration, Agilent will support the university with a broad ra ... more