Dem „Parkinson-Protein“ auf der Spur

Direkte Beobachtung der Membranbindung von α-Synuclein in lebenden Zellen gelungen

11.03.2021 - Deutschland

Wissenschaftlern der Universität Konstanz und der Freien Universität Amsterdam gelingt in Zusammenarbeit mit dem Entwicklungsteam des Unternehmens Bruker BioSpin erstmals der direkte, spektroskopische Nachweis der Bindung des „Parkinson-Proteins“ α-Synuclein an Lipidmembranen in der Zelle.

Malte Drescher Lab - University of Konstanz

graphical abstract - Proteinbindung und Spektrum

Das Protein α-Synuclein ist eines der am Häufigsten im Gehirn des Menschen vorkommenden Eiweißstoffe. Es wird oft als „Parkinson-Protein“ bezeichnet, da die Ablagerung des Eiweißstoffes in Gehirnzellen ein Kennzeichen der Parkinson‘schen Krankheit ist. Trotz des hohen Interesses der biomedizinischen Forschung an dem Protein sind viele Fragen über die Funktion und Physiologie von α-Synuclein in lebenden Zellen weiterhin offen. So bestand zum Beispiel bisher Unklarheit darüber, ob und in welchem Maße der Eiweißstoff an innere Zellbestandteile wie Membranen bindet und mit diesen interagiert. Da derartige Vorgänge eine Rolle bei der Entstehung der Krankheit spielen könnten, nutzte das Team um den Konstanzer Physikochemiker Prof. Dr. Malte Drescher die Weiterentwicklung eines etablierten Messverfahrens, der sogenannten Elektronenspinresonanz-Spektroskopie (ESR-Spektroskopie), um mehr über die Bindungseigenschaften des „Parkinson-Proteins“ zu erfahren. Die in der Fachzeitschrift „The Journal of Physical Chemistry Letters“ erschienene Studie erbringt den konzeptionellen Beweis dafür, dass sich die weiterentwickelte Methode grundsätzlich zur Aufklärung von Protein-Lipid-Interaktionen in Zellen eignet. Darüber hinaus lieferte dieser erste Praxistest den direkten Nachweis der Bindung von α-Synuclein an intrazelluläre Membranen.

Langsamer ist nicht immer gründlicher

Die weiterentwickelte Variante der ESR-Spektroskopie, welche in der aktuellen Studie erstmalig zur praktischen Anwendung gebracht wurde, wird als Schnellscan (engl.: rapid-scan) ESR-Spektroskopie bezeichnet. Bei beiden Methoden, der herkömmlichen und der weiterentwickelten, werden die zu untersuchenden Proteine zunächst mit sogenannten Spin-Sonden versehen. Diese chemischen Sonden ermöglichen es, Veränderungen in der Proteinstruktur festzustellen. Spin-Sonden besitzen je ein freies Elektron, dessen Eigendrehung („Spin“) durch die Bestrahlung mit Mikrowellen angeregt wird. „Wir können uns Spins wie kleine Kompassnadeln vorstellen, die bei der Messung mithilfe von Mikrowellenstrahlung beeinflusst werden“, verbildlicht Drescher. Bei der herkömmlichen ESR-Spektroskopie muss für jede Gruppe von angeregten Spins gewartet werden, bis diese Beeinflussung abklingt, bevor die Gruppe erneut angeregt werden kann. Dieser vergleichsweise zeitaufwändige Vorgang muss für die vollständige Messung über viele Durchgänge hinweg wiederholt werden.

Bei der Schnellscan ESR-Spektroskopie hingegen ist es nicht mehr notwendig zu warten, bis die Beeinflussung einer Spingruppe abklingt, bevor die Messung fortgesetzt wird. „Stattdessen eilt man mit der Beeinflussung spektral von Spingruppe zu Spingruppe und kommt dann in dem Moment zur ersten Gruppe zurück, in dem deren Beeinflussung gerade abgeklungen ist“, so Drescher. Dieses Verfahren verkürzt zum einen die benötigte Messdauer, zum anderen ermöglicht es die Verwendung höherer Mikrowellenenergien, was zu einer verbesserten Genauigkeit der Methode führt. Beide diese Vorteile haben sich die Forschenden in ihrer aktuellen Studie zum Bindungsverhalten von α-Synuclein zunutze gemacht.

Die neue Methode in der Praxis

Aus Vorgängerstudien in-vitro („im Reagenzglas“) war bereits bekannt, dass das „Parkinson-Protein“ α-Synuclein mit elektrisch negativ geladenen Lipidmembranen Bindungen eingehen kann. Bei der ESR-Spektroskopie geht dieser Bindungsvorgang mit einer charakteristischen Veränderung des gemessenen Signals einher. „Das zunächst ungeordnete α-Synuclein nimmt bei der Bindung an die Membran eine geordnete Form an. Dadurch sinkt die Beweglichkeit der Spin-Sonde und die Bindung des Proteins kann durch die Messmethode direkt erfasst werden“, erläutert Theresa Braun, Doktorandin in der Arbeitsgruppe Drescher und gemeinsam mit Juliane Stehle Erstautorin der Studie.

Mithilfe synthetischer, negativ geladener Membrankügelchen, sogenannter Vesikel, und aufgereinigtem α-Synuclein konnten Drescher und seine Kolleginnen und Kollegen dieselbe Signalveränderung bei der Schnellscan ESR-Spektroskopie nachweisen. Dies gelang ihnen jedoch nicht nur in-vitro, sondern auch innerhalb von Zellen des afrikanischen Krallenfroschs (Xenopus laevis), in welche zuerst die künstlichen Membrankügelchen und kurze Zeit später das Protein eingebracht wurden. Anschließend führte das Forscherteam zeitabhängige Messungen durch und konnte anhand der Veränderung des Messsignals dabei direkt beobachten, wie der Anteil des in der Zelle gebundenen Proteins mit der Zeit zunahm.

Eine vergleichbare – wenn auch deutlich schwächere – Zunahme der Menge an gebundenem α-Synuclein mit der Zeit zeigte sich außerdem, wenn keine künstlichen Membranen in die Zelle eingebracht wurden. Deshalb blieb laut Drescher nur eine Erklärung für diese entscheidende Beobachtung. „Wir sehen hier zum ersten Mal direkte Anzeichen dafür, dass α-Synuclein auch mit den zelleigenen, sprich natürlich vorhandenen Lipidmembranen interagiert“, schlussfolgert der Wissenschaftler. Aufgrund der vergleichsweise geringen Größe des Effekts blieb dies in Experimenten mit weniger genauen Messmethoden bislang verborgen.

Vom Frosch zum Mensch

In zukünftigen Studien plant das Team um Malte Drescher, auf diesem Ergebnis aufzubauen und den Vorgang der intrazellulären Bindung von α-Synuclein an natürliche Zellbestandteile weiter aufzuklären, um mehr über die Funktion des Eiweißstoffes zu erfahren. Ein wichtiger Schritt wird dabei der Wechsel von den Froschzellen als Modellsystem zu verschiedenen Säugetierzelltypen sein. Das langfristige Ziel ist, die Protein-Lipid-Interaktionen des „Parkinson-Proteins“ und dessen Rolle bei der Entstehung der Parkinson‘schen Krankheit besser zu verstehen, um so geeignete Therapieansätze entwickeln zu können.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Life Sciences?

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren
Themenwelt anzeigen

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren