Netzwerkbildung im Gehirn trotz Sendepause

Max-Planck-Wissenschaftler liefern neue Ergebnisse zur Gehirnentwicklung / Widerspruch zur bisherigen Lehrmeinung

27.06.2002

Anhand aktueller Untersuchungen zur Gehirnentwicklung haben Wissenschaftler der Max-Planck- Institute für experimentelle Medizin sowie für Biophysikalische Chemie in Göttingen den Nachweis erbringen können, dass sich auch bei kompletter Blockade der Nervenzellkommunikation normal strukturierte Netzwerke im Gehirn bilden. Mit ihrer jüngsten Publikation in der Ausgabe vom 25. Juni 2002 in den Proceedings of the National Academy of Sciences USA haben die Max-Planck-Forscher damit die bisher gängige Lehrmeinung, wonach genau gesteuerte Verschaltungsprozesse nur möglich sind, wenn Nervenzellen aktiv miteinander kommunizieren können, zu Fall gebracht.

Die Informationsverarbeitung im menschlichen Nervensystem erfolgt an spezialisierten Kontaktstellen zwischen sendenden und empfangenden Nervenzellen. Ein exakt organisiertes Netzwerk von etwa 100 Billionen dieser als Synapsen bezeichneten Kontaktstellen sorgt für die Verknüpfung der 100 Milliarden Nervenzellen in unserem Gehirn und ist für die Steuerung sowohl von einfachen Körperfunktionen und Bewegungen als auch von komplizierten Verstandes-, Gefühls- und Gedächtnisleistungen verantwortlich. Bis vor kurzem gingen Hirnforscher davon aus, dass ein normaler Ablauf der Gehirnentwicklung nur möglich ist, wenn Nervenzellen schon in den frühesten Phasen der Entwicklung aktiv miteinander kommunizieren können.

Die Kommunikation an den Synapsen beginnt, wenn eine sendende Nervenzelle durch einlaufende Signale erregt wird und ihrerseits Botenstoffe ausschüttet. Diese als Neurotransmitter bezeichneten Signalmoleküle gelangen dann zur jeweiligen Empfängerzelle und beeinflussen wiederum deren Aktivitätszustand. Um den Einfluss dieser synaptischen Kommunikation auf die Gehirnentwicklung zu untersuchen, haben die Forscherteams um Nils Brose und Christian Rosemund genetisch veränderte Mäuse, also Mutanten, erzeugt, deren Nervenzellen nicht mehr zur Freisetzung von Neurotransmittern fähig sind.

Die Untersuchungen an den Mausmutanten, die ein Modell für die menschliche Gehirnentwicklung darstellen, führten zu einem überraschenden Ergebnis: Zwar herrschte in Folge der eingeführten Mutationen in fast allen Teilen des Gehirns dieser Tiere quasi Sendepause, die komplizierten Verschaltungen zwischen den Nervenzellen entwickelten sich jedoch trotzdem weitgehend normal. "Besonders überraschend war, dass sogar die Struktur einzelner Synapsen und ihre Ausstattung mit den für die Synapsenfunktion wichtigen Proteinen in den Mausmutanten vollkommen normal war", so Nils Brose, Direktor am Max-Planck-Institut für experimentelle Medizin. "Diese Befunde stehen", wie Christian Rosenmund, Forschungsgruppenleiter am Max-Planck-Institut für biophysikalische Chemie ergänzt, "im Widerspruch zu einer großen Zahl von Arbeiten über die Mechanismen der Gehirnentwicklung."

Die Forscher sind sich einig, dass ihr genetisches Modellsystem die bisher klarste Einschätzung der Bedeutung von Nervenzellaktivität für die frühe Entwicklung des Nervensystems von Säugetieren liefert: "Entstehung und Erhalt von Synapsen basieren zunächst auf automatisch ablaufenden zellulären Programmen und erfolgen offensichtlich unabhängig von neuronaler Kommunikation", so Rosenmund. Außer Frage sei dabei allerdings, dass aktive Signalübertragung zwischen Nervenzellen für die exakte Organisation von synaptischen Netzwerken in späteren Phasen der Hirnentwicklung - etwa während der Reifung der für verschiedene Sinneswahrnehmungen verantwortlichen Hirnbereiche - sehr wichtig ist.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Kampf gegen Krebs: Neueste Entwicklungen und Fortschritte