06-Apr-2016 - POSTECH - Pohang University of Science and Technology

Researchers develop a control algorithm for more accurate lab-on-a-chip devices

Prof. Wan Kyun Chung with PhD student Young Jin Heo, MS student Junsu Kang, and postdoctoral researcher Min Jun Kim in the Robotics Laboratory at POSTECH, Korea, have developed a novel control algorithm to resolve critical problems induced from a Proportional-Integral-Derivative (PID) controller by automatizing the technical tuning process. Their research was published in Scientific Reports.

Lab-on-a-chip designates devices that integrate various biochemical functions on a fingernail-sized chip to enable quick and compact biological analysis or medical diagnosis by processing a small volume of biological samples, such as a drop of blood. To operate various functions on a lab-on-a-chip device, the key technology is the precise and rapid manipulation of fluid on a micro-scale.

In microfluidic devices, very small and trivial variables can frequently cause a large amount of errors. Up until now, Proportional-Integral-Derivative (PID) controller has normally been used for the manipulation of fluids in microfluidic chips. To apply the PID controller, a tedious gain-tuning process is required but the gain-tuning is a difficult process for people who are unfamiliar with control theory. Especially, in the case of controlling multiple flows, the process is extremely convoluted and frustrating.

The developed control algorithm can improve accuracy and stability of flow regulation in a microfluidic network without requiring any tuning process. With this algorithm, microfluidic flows in multiple channels can be controlled in simultaneous and independent way. The team expects that this algorithm has the potential for many applications of lab-on-a-chip devices. For example, cell culture or biological analysis, which are conducted in biology laboratories, can be performed on a microfluidic chip. Physical and chemical responses can be analyzed in the subdivided levels.

Facts, background information, dossiers
  • microfluidic chips
More about POSTECH
  • News

    Microglia Turned On

    Part of the immune system in the brain is made up of so-called microglia cells. Korean and Singaporean researchers have now developed a fluorescent probe that specifically labels this type of macrophage. The cells were visualized in cell culture and in the live brains of rodents. As detaile ... more

    Bacteria causing infections can be detected more rapidly

    Two years ago, a group of infants died at the university hospital and it was found to be Gram-negative bacteria that caused their death. The Gram-negative bacteria turn into pink color and Gram-positive bacteria turn into violet color when stained using the Gram stain which is a bacterial s ... more

    Team creates a more durable protein hydrogel based on elastic silk-like protein

    Prof. Hyung Joon Cha (Dept. of Chemical Engineering) and a team of researchers examined the behavior of sea anemone to create a mechanically durable hydrogel. Since the body length and width of sea anemone varies almost ten-fold by shrinking rapidly and expanding slowly under stimulus, the ... more