22-Feb-2016 - King Abdullah University of Science and Technology (KAUST)

Smart skin made of recyclable materials may transform medicine and robotics

Smart skin that can respond to external stimuli could have important applications in medicine and robotics. Using only items found in a typical household, researchers have created multi-sensor artificial skin that's capable of sensing pressure, temperature, humidity, proximity, pH, and air flow.

The flexible, paper-based skin is layered onto a post-it note, with paper, aluminum foil, lint-free wipes, and pencil lines acting as sensing components. Being made of recyclable materials, this paper skin presents a large number of sensory functions in a cheap and environmentally friendly way.

"Democratization of electronics will be key in the future for its continued growth. In that regard, a skin-type sensory platform made with recyclable materials only demonstrates the power of human imagination," said Prof. Muhammad Mustafa Hussain, senior author of the Advanced Materials Technologies paper. "This is the first time a singular platform shows multi-sensory functionalities close to that of natural skin. Additionally they are being read or monitored simultaneously like our own skin."

Facts, background information, dossiers
  • skin
  • robotics
  • artificial skin
More about King Abdullah University of Science and Technology
  • News

    Getting to the bottom of deadly weather

    A study of the correlation between temperature and mortality in the Indian city of Pune has found that cold, rather than heat, is by far the bigger killer. This is at odds with warnings and mitigating measures authorities have been taking in anticipation of climate change. Although South As ... more

    Recruiting bacteria to build catalysts atom by atom

    Exploiting the unusual metal-reducing ability of the iron-breathing bacterium Geobacter sulfurreducens, KAUST researchers have demonstrated a cheap and reliable way to synthesize highly active single-atom catalysts. The innovation, which could dramatically improve the efficiency and cost of ... more

    Lighting the path to recycling carbon dioxide

    Semiconductive photocatalysts that efficiently absorb solar energy could help reduce the energy required to drive a bioelectrochemical process that converts CO2 emissions into valuable chemicals, KAUST researchers have shown. Recycling CO2 could simultaneously reduce carbon emissions into t ... more

More about Wiley