It takes a thief
The CRISPR/Cas9 protein system, which is central part to bacterial adaptive immunity, has soared to great prominence in recent years for its enormous potential as a genome editing tool. In studying this system, scientists have found it to be akin to a Russian doll in that the unlocking of one secret reveals another secret within. Jennifer Doudna, a biochemist with Berkeley Lab's Molecular Biophysics and Integrated Bioimaging (MBIB) division, who has been at the forefront of unlocking CRISPR/Cas secrets has just unlocked another. Working off data acquired at the Advanced Light Source, Doudna and her research group have discovered the structural basis by which bacteria are able to capture genetic information from viruses and other foreign invaders for use in their own immunological system.

This image shows the overall architecture of Cas1-Cas2 bound to protospacer DNA with line segments that indicate DNA lengths spanning a total of 33 nucleotides.
courtesy of Jennifer Doudna and James Nuñez, Berkeley Lab/UC Berkeley
"By studying X-ray crystal structures of Cas1 and Cas2 enzymes in Escherichia coli, we can now see how foreign DNA is manipulated and bent upon being captured by Cas1 and Cas2," Doudna says. "Knowing how Cas1 and Cas 2 function in bacterial genomes provides us with a possible mechanism for studying or correcting problems in human genomes."
Doudna, who also holds appointments with the University of California (UC) Berkeley's Department of Molecular and Cell Biology and Department of Chemistry, and is an investigator with the Howard Hughes Medical Institute (HHMI) describes this research.
While we humans view bacteria as the enemy, bacteria have enemies too - viruses and invading strands of nucleic acid known as plasmids. To protect themselves, bacteria have developed an adaptive-type immune system that revolves around a unit of DNA known as CRISPR, which stands for Clustered Regularly Interspaced Short Palindromic Repeats. A CRISPR unit of DNA is made up of "repeat" elements, base-pair sequences ranging from 30 to 60 nucleotides in length, separated by "spacer" elements, variable sequences that are also from 30 to 60 nucleotides in length. The combination of CRISPR and CRISPR-associated - "Cas" - proteins, enable bacteria to convert spacers into customized RNA molecules that silence critical portions of a foreign invader's DNA. The CRISPR/Cas system also enables a bacterium to acquire immunity from similar invasions in the future by "remembering" prior infections based on the foreign DNA spacer elements integrated within the bacterium's CRISPR loci.
Recently Doudna and her group discovered that Cas1 and Cas2 are the only two proteins in the CRISPR/Cas system required for bacteria to "steal" and "memorize" the genetic information in foreign DNA, but how this task is accomplished remained unknown. Now, using the macromolecular crystallography beamline (8.3.1) at the ALS, which is a U.S. Department of Energy Office of Science user facility, Doudna and her group have discovered that Cas1 and Cas2 function as molecular rulers that will not only recognize foreign DNA but also perfectly measure the DNA during the stealing process.
"We knew from our previous work that Cas1 and Cas2 capture double-stranded DNA instead of single-stranded DNA, but what we didn't expect when we solved the crystal structure in E. coli was that the ends of the double-stranded DNA are being separated by Cas1," Nuñez says. "This is a critical finding because we now know we can program Cas1 and Cas2 with DNA substrates containing a central double-stranded DNA region and single-stranded DNA on the ends, and then perhaps insert these DNA substrates into specific sites along a target genome for editing purposes."
Original publication
Most read news
Original publication
James K. Nuñez, Lucas B. Harrington, Philip J. Kranzusch, Alan N. Engelman & Jennifer A. Doudna; "Foreign DNA capture during CRISPR–Cas adaptive immunity"; Nature; 2015
Organizations
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
More news from our other portals
Last viewed contents
C4_carbon_fixation
Bacterial armor could be a new target for antibiotics

Shining some light on the obscure proteome - Chemoproteomics draw the target landscape of HDAC drugs
Cellexus Biosystems appoints Dr Julie Bick as its US-based Chief Scientific Officer

Urinary tract infection: How bacteria nestle in

Cell atlas of the aging lung

New Chance for Better Pandemic Response - Researchers succeed in developing neutralizing anti-SARS-CoV-2 antibodies from immune cells of healthy donors

Link between bacteria metabolism and communication could pave way for new antivirulence drugs

Merck Confirms Guidance for 2022 and Delivers Strong Organic Growth in Q3 - Merck continued to grow despite a challenging external operating environment
New tool illuminates connections between stem cells and cancer
