15-Aug-2013 - Osaka University

Raman pixel by pixel

Raman spectroscopy provides molecular specificity through spectrally-resolved measurement of the inelastic scattering under monochromatic excitation. In the context of microscopy, it may serve as label-free cell imaging, providing structural information. However, the very low cross-section of Raman scattering requires long time exposures, which preclude imaging of cellular components with low concentrations. Surface-enhanced Raman spectroscopy (SERS), which relies on the local electromagnetic field enhancement produced by metallic nanostructures, is an approach to drastically increase the sensitivity of the Raman detection while retaining large amounts of spectral information. In cellular imaging, the measurement is usually performed on endocytosed nanostructures. However, the measured SERS signals vary strongly as they depend on excitation beam profile, local particle presence or aggregation and local molecular environment. Identifying and extracting spectra corresponding to molecules of interest within a SERS data set is very difficult.

Conventional data analysis methods look for global patterns in the data, whereas the single-molecule sensitivity of SERS can detect independent molecules in each pixel with little correlation between pixels. Nicolas Pavillon and his colleagues from Osaka University now explored different algorithmic methods to automatically discriminate spectra of interest in the measured field of view, without imposing assumptions on the self-similarity of the data. The proposed method relies on the indexing of the positions of relevant spectra, which are selected by the computation of a quality map.

The scientists proposed various criteria to compute spectra extraction, such as the spectral energy, the peak count per spectra, or the projection coefficients on SVD vectors. They assessed each criteria with simulated data and applied this approach to different types of measurements, such as dried Rhodamine 6G adsorbed on gold nanoparticles deposited on a glass substrate, and HeLa cells with endocytosed gold nanoparticles.

The tests with simulated data showed that various criteria can provide satisfactory results. The computation time could be tremendously decreased by discarding irrelevant pixels through a simple criterion based on the spectral energy, reducing the processing time to typically less than 10 seconds for a field of view on the order of 100 X 100 pixels.

The tests performed on Rhodamine 6G measurements demonstrated the validity of the proposed approach, where its known spectrum could be extracted automatically. The peak count criterion was the most suitable for most cases, as it detects various patterns without filtering out any curve which may only appear a single instance in the data set. Such single spectra may be critical important in a given SERS detection experiment. One main feature of the proposed approach is that its output is a localization map of the most relevant spectra in a measurement. The spatial information is retained, making it possible to trace back the positions of several spectra with identical properties, for instance.  The optimized method was utilized to extract and classify the complex SERS response behavior of gold nanoparticles taken in live cells.

Facts, background information, dossiers
More about Osaka University
  • News

    Biomarker helps identify 'window of opportunity' for cancer chemotherapy timing

    Angiogenesis, the formation of new blood vessels, is essential for tumor growth. A new study describes a vascular stabilization biomarker that can visualize blood vessel activity, thus optimizing the timing of anticancer therapies including anti-angiogenics. Combination therapy using angiog ... more

    Growing organs a few ink drops at a time

    Printed replacement human body parts might seem like science fiction, but this technology is rapidly becoming a reality with the potential to greatly contribute to regenerative medicine. Before any real applications, "bioprinting" still faces many technical challenges. Processing the bio-in ... more

    A new twist on asymmetric catalysis

    In the same way a glove will only fit one hand, molecules have the symmetry that controls their behavior and interactions. In drug design, this means reversing the symmetry of a molecule can mean the difference between an effective treatment or a compound that has serious negative effects. ... more

More about WILEY-VCH
  • News

    Laser pulses reveal DNA repair mechanisms

    Understanding the cellular response to DNA strand breaks is crucial to decipher the mechanisms maintaining the integrity of our genome. In eukaryotic cells, the molecular events triggered by DNA damage are strongly influenced by the local chromatin environment surrounding the lesion. The en ... more

    A well-matched couple

    Photoacoustic (PA) imaging is a method to visualize structures with optical contrast in biological tissue. Despite the strong optical scattering in tissue, high resolution images in the visible and near infrared spectral range can be obtained. The method is based on sound waves which are ge ... more

    A better look into cerebrospinal fluid

    Cerebrospinal fluid (CSF) of the central nervous system disseminates numerous cells, proteins, microparticles, and DNA as potential biomarkers of many diseases and therapy efficacy. For example, circulating tumor cells are a sign for metastatic cancer, bacteria can reveal an infectious meni ... more