15-Sep-2017 - Johannes Gutenberg-Universität Mainz

Multifunctional nano-sized drug carriers based on reactive polypept(o)ides

In cooperation with researchers from the University of Tokyo and Gutenberg Research Awardee Prof. Kazunori Kataoka, Chemists from Mainz have been able to demonstrate that reactive polypept(o)ides constitute ideal building blocks to control morphology and function of carrier systems in a simple but precise manner.

Nano-sized carrier systems find medical application to improve pharmacologic properties of bioactive agents. For many therapeutic approaches, it is important that the carrier system can stably incorporate the cargo during circulation without inducing aggregation, while cargo should ideally only be released after successful cellular uptake. These requirements have thus far only been met by chemistry approaches with nanoparticles that are difficult to characterize. Consequently, clinical translation of these systems has been very difficult to achieve.

In cooperation with researchers from the University of Tokyo and Gutenberg Research Awardee Prof. Kazunori Kataoka, Chemists from Mainz have been able to demonstrate that reactive polypept(o)ides constitute ideal building blocks to control morphology and function of carrier systems in a simple but precise manner. Polypept(o)ides (polysarcosine-block-polypeptide copolymers) have emerged as interesting hybrid materials for drug carrier systems since they combine protein-resistance and high water-solubilty of polysarcosine with the stimuli-responsiveness, intrinsic multifunctionality, and secondary structure formation of polypeptides.

In this cooperative work, the researchers could show for the first time that the formation of β-sheets by the synthetic polypeptide segment can be exploited to deliberately manipulate the morphology of polymeric micelles, which enables the synthesis of either spherical or worm-like micelles from the same block copolymer. By employing reactive groups in the polypeptide segment of the block copolymer, micelles can be core cross-linked by dithiols, resulting in bio-reversible disulfide bonds. Due a difference in redox potential, disulfides are considered stable extracellularly, while they are rapidly reduced to free dithiols intracellularly, which leads to a disintegration of the carrier system and release of the cargo.

“In this way, a variety of different nanocarriers with different functions becomes readily accessible from one single block copolymer and a very selective post-polymerization step. This modular approach to nanoparticles with different function and morphology bears the advantage to address important questions with good comparability, such as the influence of size and shape on in vivo circulation times, biodistribution, tumor accumulation, cell uptake and therapeutic response since the same starting material is used” comments Matthias Barz.

First in vivo experiments have already demonstrated that these core-stabilized micellar nanocarriers exhibit stable circulation behavior, thus indicating that interactions with serum components or blood vessels are absent. Only by ensuring that no unspecific interactions occur within the complex biological setting, cellular uptake in desired specific cell populations seems feasible. The therapeutic potential of the described nanoparticle platform will be further investigated with regards to immunotherapy of malignant melanoma within the SFB 1066.

Facts, background information, dossiers
  • nanostructures
  • nanoparticles
  • malignant melanoma
  • hybrid materials
  • drug carriers
  • disulfides
  • disulfide bonds
  • copolymers
  • building blocks
More about Uni Mainz
  • News

    Brain Confetti: Why our Sense of Smell Declines in Old Age

    As mammals age, their sense of smell deteriorates. In a study published in the journal ‘Cell Reports’, an interdisciplinary research team at Helmholtz Zentrum München and the University Medical Centre Mainz investigated why this is the case. For their study, the researchers tracked the deve ... more

    Synthesis of opium alkaloids using electric current

    Researchers at Johannes Gutenberg University Mainz (JGU) have mastered a nearly 50-year-old challenge of electrosynthetic chemistry, namely the electrochemical synthesis of thebaine. The chemists had set themselves this difficult task within the framework of a collaboration with the Univers ... more

    RNA modification important for brain function

    Researchers at the Institute of Molecular Biology (IMB) and Johannes Gutenberg University Mainz (JGU) in Germany have shown that a new way of regulating genes is vital for the activity of the nervous system. Researchers at the Institute of Molecular Biology (IMB) and Johannes Gutenberg Uni ... more