11-Sep-2020 - CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences

Allergic immune responses help fight bacterial infections

Exciting discovery could also explain why the body has maintained the “allergy module” throughout evolution

Researchers from CeMM Research Center of Molecular Medicine of the Austrian Academy of Sciences, the Medical University of Vienna and Stanford University School of Medicine, have found that a module of the immune system, which is best known for causing allergic reactions, plays a key role in acquiring host defense against infections triggered by the bacterium Staphylococcus aureus. This “allergy module”, constituted by mast cells and Immunoglobulin E, can grant protection and increased resistance against secondary bacterial infections in the body. These findings indicate a beneficial function for allergic immune responses and are now published in the journal Immunity.

Allergy is one of the most common diseases in Europe, it is estimated that more than 150 million Europeans suffer from recurring allergies and by 2025 this could have increased to half of the entire European population.1 Allergic patients initially undergo a process of “sensitization”, meaning that their immune system develops a specific class of antibodies, so called Immunoglobulin E antibodies (IgE), which can recognize external proteins, referred to as allergens. IgEs bind and interact with cells that express a specific receptor called FcεR1. There are only a few cell types in the body that express the FcεR1 receptor and probably the most important ones are mast cells, a type of immune cell found in most tissues throughout the body.

When re-exposed to the allergen, mast cells (with IgE bound to their FcεR1 receptors) immediately react by rapidly releasing different mediators (e.g. histamine, proteases or cytokines) that cause the classic allergic symptoms. These symptoms depend on the tissue where the contact with the allergen happens and can range from sneezing/wheezing (respiratory tract) to diarrhea and abdominal pain (gastrointestinal tract) or itching (skin). Systemic exposure to allergens can activate a large number of mast cells from different organs at the same time, causing anaphylaxis, a serious and life-threatening allergic reaction.

Despite decades of research and detailed knowledge of the critical role of IgEs and mast cells in allergies, the physiological, beneficial function of this “allergy module” is still not completely understood. In 2006, Stephen J. Galli, senior co-author of this study, and his laboratory at Stanford University revealed the importance of mast cells for innate resistance against venoms of certain snakes and the honeybee. Subsequent work from the Galli laboratory showed the critical role of the “allergy module” in acquired host defense against high doses of venom: this finding (to which Philipp Starkl, first author of the current study, contributed importantly) represented the first clear experimental evidence supporting the “Toxin Hypothesis” postulated by Margie Profet in 1991. This hypothesis proposed a beneficial function for allergic reactions against noxious substances.

Following up on this discovery, Philipp Starkl, Senior Postdoctoral fellow at the Medical University of Vienna and CeMM, together with Sylvia Knapp, Professor at the Medical University of Vienna and CeMM PI, and Stephen J. Galli, Professor at Stanford University School of Medicine, and colleagues, set out to investigate whether this phenomenon could be relevant in defense against other toxin-producing organisms, in particular, pathogenic bacteria. The authors selected the bacterium Staphylococcus aureus as pathogen model due to its enormous clinical relevance and broad repertoire of toxins. This bacterium is a prototypic antibiotics-resistant pathogen and is also associated with the development of allergic immune responses in diseases such as asthma and atopic dermatitis. For their research, they used different experimental S. aureus infection models in combination with genetic approaches and in vitro mast cell models to reveal the functions of selected components of IgE effector mechanisms.

The scientists found that mice with a mild S. aureus skin infection develop an adaptive immune response and specific IgEs antibodies against bacterial components. This immune response grants these mice an increased resistance when they are confronted with a severe secondary lung or skin and soft tissue infection. However, mice that are lacking functional IgE effector mechanisms or mast cells are unable to build such protection. These findings indicate that the “allergic” immune response against bacteria is not pathological, but instead protective. Hence, defense against toxin-producing pathogenic bacteria might be an important biological function of the “allergy module”.

This study is an important collaboration initiated by Philipp Starkl at the laboratory of Stephen J. Galli at Stanford University together with other colleagues and then continued at the laboratory of Sylvia Knapp at CeMM and the Medical University of Vienna. This exciting discovery not only advances the general understanding of the immune system and most notably allergic immune responses, but it could also explain why the body has maintained the “allergy module” throughout evolution. Despite their dangerous contributions to allergic diseases, IgEs and mast cells can exert beneficial functions that the immune system can capitalize on to protect the body against venoms and infections with toxin-producing bacteria, such as S. aureus.

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences

Recommend news PDF version / Print Add news to watchlist

Share on

Facts, background information, dossiers
More about CeMM
More about Medizinische Uni Wien
  • News

    Dust mite allergens trigger inflammatory responses

    A research team at MedUni Vienna, working in cooperation with the Johns Hopkins University in Baltimore, has discovered how certain dust mite allergens activate a well-known inflammatory factor – serum amyloid A protein –and can thus “trim” the lung tissue “in the direction of allergy”. The ... more

    Cow's milk protein beta-lactoglobulin prevents allergies

    Numerous studies have shown that growing up on a farm and drinking natural, unprocessed cow's milk in early childhood protects against the development of immunoglobulins E (IgE), which are responsible for allergy symptoms. A recent study led by Franziska Roth-Walter and Erika Jensen-Jarolim ... more

    Sugar as a remedy for the common cold

    Viral infections are currently more topical than ever. Not only are coronavirus and influenza constantly in the news but it is also the season for colds – and, as we all know, colds are caused by rhinovirus. A Medical University of Vienna start-up, "G.ST Antivirals GmbH" now has viral infec ... more

More about Stanford University
  • News

    How to Put Neurons into Cages

    Using microscopically fine 3D printing technologies from TU Wien (Vienna) and sound waves used as tweezers at Stanford University (California), tiny networks of neurons have been created. Microscopically small cages can be produced at TU Wien (Vienna). Their grid openings are only a few mic ... more

    New CRISPR-based tool can probe and control several genetic circuits at once

    Every cell in our body has a computer-like control system that sends biological signals through thousands of circuits to monitor the cell's needs and regulate its responses. But when diseases such as cancer arise, these regulatory circuits often go awry, resulting in unnatural signals and r ... more

    Pathogens find safe harbor deep in the gastric glands

    Scientists have long tried to understand how pathogenic bacteria like Helicobacter pylori, a risk factor for stomach ulcers and cancer, survive in the harsh environment of the stomach. In a new study in the open-access journal PLOS Biology, researchers led by Connie Fung and Manuel Amieva a ... more

  • Videos

    Pop science: Stanford engineers stop soap bubbles from swirling

    The spinning rainbow surface of a soap bubble is more than mesmerizing – it’s a lesson in fluid mechanics. Better understanding of these hypnotic flows could bring improvements in many areas, from longer lasting beer foam to life-saving lung treatments. more

    The Neuroscience of Learning

    Bruce McCandliss, professor in Stanford’s Graduate School of Education and the director of the Stanford Center for Mind, Brain and Computation, speaks about brain-imaging technology that is revolutionizing the study of educational experiences and their effect on the brain. more

    Stanford scientists produce cancer drug in a plant

    A common cancer drug was discovered in a Himalayan plant, and until now that plant was the only source of the drug. Now, a Stanford chemical engineer has identified the 10 drug-making enzymes and placed them into another plant that is easier to grow in the lab. This is the first step to bei ... more