20-Mar-2020 - Harvard University

Building a better botox

Small engineering tweaks to botulinum toxin B could make it more effective and longer-lasting with fewer side effects

Botulinum toxins -- a.k.a. botox -- have a variety of uses in medicine: to treat muscle overactivity in overactive bladder, to correct misalignment of the eyes in strabismus, for neck spasms in cervical dystonia, and more. Two botulinum toxins, types A and B, are FDA-approved and widely used. Although they are safe and effective, the toxins can drift away from the site of injection, reducing efficacy and causing side effects.

New research at Boston Children's Hospital finds that some small engineering tweaks to botox B could make it more effective and longer-lasting with fewer side effects.

A third way for botox B to bind to nerves

Botox works by attaching to nerves near their junction with muscles, using two cell receptors. Once docked, it blocks release of neurotransmitter, paralyzing the muscle.

Min Dong, PhD, at Boston Children's, with lab members Linxiang Yin, PhD, Sicai Zhang, PhD, and Jie Zhang, PhD, had been looking for ways to get botox B to bind to nerve cells more strongly, to keep it in place and avoid side effects. In another member of the botox family, type DC, they identified a potential third means of attachment: a lipid-binding loop capable of penetrating lipid membranes. Through structural modeling studies, they discovered that when particular amino acids are at the tip of the loop, the toxin can indeed use the loop to attach to the nerve-cell surface, in addition to binding to toxin receptors.

They further found that although botox B contains this same lipid-binding loop, it lacks these key amino acids at its tip. So Dong and colleagues added them in through genetic engineering.

As hoped, the introduced changes enhanced the toxin's ability to bind to nerve cells. In a mouse model, the engineered toxin was absorbed by local neurons around the injection site more efficiently than the FDA-approved form of botox B, with less diffusion away from the injection site. This led to more effective local muscle paralysis, longer-lasting local paralysis, and reduced systemic toxicity.

"Based on our mechanistic insight, we created an improved toxin that showed higher therapeutic efficacy, better safety range, and much longer duration," says Dong. "The type A toxin does not have the lipid-binding loop, so we are still working on engineering this lipid-binding capability into type A."

Facts, background information, dossiers
More about Harvard University
  • News

    Unmuting the genome

    Hereditary diseases as well as cancers and cardiovascular diseases may be associated with a phenomenon known as genomic imprinting, in which only the maternally or paternally inherited gene is active. An international research team involving scientists at the Technical University of Munich ... more

    Deep learning dreams up new protein structures

    Just as convincing images of cats can be created using artificial intelligence, new proteins can now be made using similar tools. In a report in Nature, a team including researchers at the University of Washington,Rensselaer Polytechnic Institute, and Harvard University describe the develop ... more

    New research from Harvard explores link between walnut consumption and life expectancy

    According to a study by researchers from the Harvard T.H. Chan School of Public Health, higher walnut consumption – both in terms of the amount and frequency – may be associated with a lower risk of death and an increase in life expectancy among older adults in the U.S., compared to those w ... more

  • Videos

    A diamond radio receiver

    Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences have made the world’s smallest radio receiver – built out of an assembly of atomic-scale defects in pink diamonds. This tiny radio — whose building blocks are the size of two atoms — can withstand extrem ... more

    Timing Cancer Treatment

    There may be an ideal waiting period for delivering multiple cancer drugsResearchers led by members of the Department of Systems Biology at Harvard Medical School had been studying how silencing MDMX, an oncogene, affected the dynamics of p53, a natural tumor suppressor, in cancer cells whe ... more

    Chemical Exposures and the Brain: The Flint Water Crisis and More

    The water crisis gripping Flint, Michigan has exposed thousands of children to unsafe lead levels, triggering a federal emergency declaration and national conversation about basic public health protections. Lead can be toxic to the brain, and children can be particularly vulnerable. However ... more