18-Dec-2019 - Technische Universität München

From cancer medication to antibiotic

Modified cancer drug effective against multi-resistant bacteria

Antibiotic-resistant bacteria are increasingly the source of deadly infections. A team of scientists from the Technical University of Munich (TUM) and the Helmholtz Center for Infection Research (HZI) in Braunschweig have now modified an approved cancer drug to develop an active agent against multidrug-resistant pathogens.

The methicillin-resistant Staphylococcus aureus (MRSA) is the source of severe and persistent infections. Some strains are even resistant to multiple antibiotics. There is consequently an urgent need for new drugs effective against MRSA infections.

"The industrial development of new antibiotics is stalling and not keeping pace with the spread of antibiotic resistance. We urgently need innovative approaches to meet the need for new infection therapies that do not lead directly to renewed resistance," says Prof. Eva Medina, director of the HZI Infection Immunology Research Group.

New antibiotic development strategies

One promising strategy is to test the potential effect of approved drugs on bacteria. “Our focus was on a class of human proteins, called kinases, which have many inhibitors to begin with," explains study leader Stephan Sieber, professor of organic chemistry at TUM.

In this vein, the researchers chemically modified the active ingredient sorafenib, a cancer drug that is effective against MRSA, to achieve a stronger antibiotic effect. This led to the development of PK150, a molecule ten times more effective against MRSA than the original substance.

Multiple attacks prevent the development of resistance

The potent new agent targets various unconventional structures within the bacteria. Two targets were investigated in greater detail: For one, PK150 inhibits an essential protein involved in bacterial energy metabolism. For another, it acts on the cell wall.

In contrast to previously known antibiotics such as penicillin and methicillin, which interfere with cell wall formation, PK150 acts indirectly. It knocks the protein production in bacteria off kilter. As a result, the bacteria release more proteins that control the cell wall thickness to the outside, causing the cells to burst.

In mice, PK150 has proven to be effective against MRSA in a variety of tissues. While staphylococci rapidly develop resistance to other antibiotics, the researchers did not observe the development of any resistance to PK150.

Effectiveness against biofilms and persisters

Eva Medina and Dr. Katharina Rox, a pharmacologist from the Department of Chemical Biology at HZI, showed that PK150 has favorable pharmacological properties. It can be administered as a tablet, for example, and remains stable in the body for several hours. "As a result of the chemical changes to the molecule, PK150 no longer binds to human kinases, but acts very specifically against bacterial targets," says Sieber.

And PK 150 has another benefit: "MRSA infections are very often chronic, as the bacteria can become dormant. PK150 even kills these, as well as germs protected in biofilms," says Prof. Dietmar Pieper, head of the HZI research group "Microbial Interactions and Processes".

In the context of the aBACTER project, Prof. Sieber's team is now further optimizing PK150 to enter the clinical development phase.

Facts, background information, dossiers
  • multidrug resistance
  • Methicillin-resista…
  • bacteria
  • sorafenib
More about TU München
  • News

    Transparent human organs allow 3D maps at the cellular level

    For the first time, researchers managed to make intact human organs transparent. Using microscopic imaging they could revealed underlying complex structures of the see-through organs at the cellular level. Resulting organ maps can serve as templates for 3D-bioprinting technologies. In the f ... more

    Gene scissors against incurable muscular disease

    Duchenne type muscular dystrophy (DMD) is the most common hereditary muscular disease among children. A Munich based team has developed a gene therapy that may provide permanent relief for those suffering from DMD. LMU researcher Eckhard Wolf was involved in the study. Muscles need dystroph ... more

    A real alternative to crude oil

    A research team from the Fraunhofer Society and the Technical University of Munich (TUM) led by chemist Volker Sieber has developed a new polyamide family which can be produced from a byproduct of cellulose production – a successful example for a more sustainable economy with bio-based mate ... more

More about Helmholtz-Zentrum für Infektionsforschung
  • News

    Predicting slippery spots for the ribosome

    In the genetic blueprint for proteins, the information for each amino acid is encoded by codons. A codon consists of three consecutive building blocks of messenger RNA (mRNA), a base triplet that encodes exactly one amino acid. During protein synthesis, adaptor molecules - called tRNAs - sp ... more

    Super-antibody strategy for universal vaccines

    New influenza vaccines are required every autumn, because the viruses constantly change the components to which our immune protection responds. Medical research is focusing on universal vaccines that target more stable parts of the viruses. This new generation of broadly neutralising antibo ... more

    How the body produces an endogenous antibiotic with anti-inflammatory effects

    For a long time, itaconic acid was only known as a metabolic product of fungi. Its function was unknown, but for decades it has been used industrially for polymer production. In 2013, it was surprisingly discovered as an important metabolic product in the immune system. This newly described ... more

  • Companies

    Helmholtz-Zentrum für Infektionsforschung GmbH

    As a Helmholtz centre for infectious diseases, the main focus of the GBF research activities is to study microbial virulence factors, host-pathogen interactions, and immunity to develop strategies for the diagnosis, prevention and therapy of human infectious diseases. In addition, the GBF B ... more

  • Research Institutes

    Helmholtz-Zentrum für Infektionsforschung GmbH

    How do bacteria, viruses, parasites and fungi make us sick? How does our immune system defend our body? These are the questions we at the HZI want to answer. Our goal: To set up the basis for new diagnostic tools, new active agents and new therapies against infectious diseases. Together wi ... more