Interaktive Mikroskopie für Biologen

Ein revolutionärer Ansatz zur Steuerung embryonaler Entwicklung

07.02.2018 - Deutschland

Bewegungen innerhalb von Zellen, wie Strömungen des flüssigen Zytoplasmas, sind vermutlich essenziell für die embryonale Entwicklung. Geprüft werden konnte diese Annahme jedoch nicht, da geeignete Methoden fehlten, intrazelluläre Strömungen zu verändern. Nun haben Forscher des Max-Planck-Instituts für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden eine Möglichkeit gefunden, Bewegungen in lebendigen Embryonen gerichtet zu steuern. Dem Team um Moritz Kreysing gelang es, mit dieser neuen Technologie, Entwicklungsprozesse von Embryonen aktiv zu verändern. Die Studie validiert Hypothesen zur Polarisation von Embryonen und verdeutlicht, dass die Zukunft der Mikroskopie interaktiv ist.

Mittasch et al. / MPI-CBG

Dresdner Forscher induzieren Flüsse in Embryonen um so deren Entwicklung zu steuern.

Eine zentrale Frage der Biologie ist, wie sich aus einer befruchteten Eizelle ein kompletter Organismus entwickeln kann. Die molekularbiologische Forschung ermöglichte in den letzten Jahren tiefe Einblicke in dieses Phänomen embryonaler Entwicklung. Ein zentraler Aspekt jedoch blieb unbeantwortet und war methodisch sehr schwer zugänglich. Damit sich ein Organismus korrekt entwickeln kann, müssen Biomoleküle an die richtigen Stellen des wachsenden Embryos gelangen, ähnlich wie Baumaterial auf einer Baustelle. Ein frühes und wichtiges Beispiel für diese Umverteilung von Material ist die biochemische Polarisation befruchteter Eizellen. Dieser Prozess definiert die spätere Körperachse des Tiers, d.h. zum Beispiel wo der Kopf eines Wurmes und wo sein Schwanz wachsen wird. Durch welche Mechanismen polarisationsrelevante Moleküle verteilt werden, blieb jedoch lange unbeantwortet, da eine geeignete Methode fehlte, schonend in den intrazellulären Transport lebender Embryos einzugreifen.

Ein Forscherteam um Moritz Kreysing in Zusammenarbeit mit weiteren Gruppen am MPI-CBG, der Fakultät für Mathematik und dem Biotechnologischen Zentrum der TU Dresden ist es nun gelungen, mit ihrer nicht-invasiven Lasertechnologie FLUCS (englisch:“focused-light-induced-cytoplasmic-streaming“) kontrollierte Ströme in lebenden Embryonen zu erzeugen. Mit diesem revolutionären Werkzeug konnten die Forscher die Bedeutung der Bewegung des Zytoplasmas für die Polarisation der Eizelle testen und somit bestehende Hypothesen validieren und ergänzen.

Matthäus Mittasch, Doktorand und Erstautor der Studie, schwärmt: „Mit FLUCS wird die Mikroskopie sich entwickelnder Embryonen plötzlich interaktiv“. Und tatsächlich: Angeleitet durch realistische Computersimulationen gelang es den Forschern sogar, die Körperachse von Wurm-Embryonen mit Hilfe von FLUCS umzukehren, was die räumlich gespiegelte Entwicklung des Wurms einleitete. Forschungsgruppeleiter Moritz Kreysing, der auch dem Zentrum für Systembiologie Dresden angehört, kommt zu dem Schluss: „Die Möglichkeit das Innere von Zellen zu bewegen wird grundlegend zum Verständnis beitragen wie sich Zellen bewegen, wie sie auf externe Signale reagieren und wie sie sich teilen. Weiterhin eröffnet sich mit FLUCS erstmals die Möglichkeit, experimentell nachzuvollziehen wie lebende Organismen aus der Interaktion biochemischer Reaktionen und physikalischer Bewegung hervorgehen.“ Forscher sind sich einig: In der Medizin hat FLUCS das Potenzial, embryonale Entwicklungsstörungen besser zu verstehen, In-vitro-Fertilisation zu verbessern und die Erprobung neuer Medikamente zu vereinfachen.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Zuletzt betrachtete Inhalte

Sporophyll

Neue strategische Partnerschaft für die Entwicklung von Reagenzien der nächsten Generation zum T-Zellen-Nachweis - Polaris Biology und Tetramer Shop schließen sich zusammen, um hochmoderne Kapazitäten für Einzelzellanalysen bereitzustellen.

Hochempfindliches Verfahren zur Massenanalyse von Biomolekülen

Hochempfindliches Verfahren zur Massenanalyse von Biomolekülen

Erfolgreicher Crowdfunding-Start für Smartphone Add-on zur Behandlung von Insektenstichen

Erfolgreicher Crowdfunding-Start für Smartphone Add-on zur Behandlung von Insektenstichen

Nanoreaktoren nach natürlichen Vorbildern gebaut

Nanoreaktoren nach natürlichen Vorbildern gebaut

Genetische Ursache von Herzschwäche entdeckt

Hoffnungsvolle Signale - Sieben Neuansiedlungen im Biotechnologiepark des Campus Berlin-Buch in 2003

Kuros schließt Patientenrekrutierung für eine klinische Phase-IIb-Studie zu KUR-113 bei Patienten mit Tibiaschaftfrakturen ab - Bericht zur Sicherheit und Wirksamkeit von KUR-113 wird im ersten Halbjahr 2011 erwartet

DCS Innovative Diagnostik-Systeme Dr. Christian Sartori GmbH & Co. KG - Hamburg, Deutschland

DCS Innovative Diagnostik-Systeme Dr. Christian Sartori GmbH & Co. KG - Hamburg, Deutschland

Gibt es einen guten Corona-Schutz auch ohne spürbare Impfreaktionen? - Manche fühlen sich nach der Covid-19-Impfung pudelwohl: kein Fieber, nicht einmal Kopfschmerzen. Aber ist das Immunsystem überhaupt angesprungen, wenn gar nichts spürbar ist?

Gibt es einen guten Corona-Schutz auch ohne spürbare Impfreaktionen? - Manche fühlen sich nach der Covid-19-Impfung pudelwohl: kein Fieber, nicht einmal Kopfschmerzen. Aber ist das Immunsystem überhaupt angesprungen, wenn gar nichts spürbar ist?

Das Gen, das aus Ponys Großpferde macht - TiHo-Forscher entdecken genetische Ursache für Körpergrößen bei Pferden

1 aus 170.000: Den optimalen Antikörper Klick für Klick finden - Bionity.COM macht mit komfortabler Antikörpersuche umfassendes Antikörperangebot transparent

1 aus 170.000: Den optimalen Antikörper Klick für Klick finden - Bionity.COM macht mit komfortabler Antikörpersuche umfassendes Antikörperangebot transparent