Meine Merkliste
my.bionity.com  
Login  

„Sehhilfe“ für massenspektrometrische Bildgebung

Verteilung chemischer Substanzen kann nun auch an biologischen Proben mit unebenen Oberflächen sichtbar gemacht werden

10.02.2017

Benjamin Bartels, Max-Planck-Institut für chemische Ökologie

Höhenprofil einen Wirsingstückes (4 x 4 mm). Die maximale Höhendifferenz beträgt 2.38 mm.

Benjamin Bartels, Max-Planck-Institut für chemische Ökologie

beantworten (RSC Advances, Januar 2017, DOI: 10.1039/C6RA26854D) Speziell angefertigte Laser-Quelle für bildgebende Massenspektrometrie: Mit Hilfe der verbesserten Laser-Ablations-Elektrospray-Ionisierung (LAESI) können nun auch die Oberflächen von unebenen Proben, wie dieses zerklüftete Stück eines Wirsingblatts, analysiert werden.

Die Analyse von biologischen Gewebeproben mit unebenen Oberflächen stellte bislang ein großes Problem dar. Forscher am Max-Planck-Institut für chemische Ökologie in Jena haben ein massenspektrometrisches Verfahren weiterentwickelt, mit dem nun auch die Verteilung von Molekülen auf welligen, haarigen, bauchigen oder zerklüfteten Proben sichtbar gemacht werden kann. Die Quelle für das Laser-basierte Verfahren wurde speziell angefertigt, um den Höhenunterschieden unebener Proben gerecht zu werden. Mit Hilfe eines Entfernungs-Sensors wird ein Höhenprofil der Oberfläche vor der eigentlichen chemischen Bildgebung aufgezeichnet. Das verbesserte Verfahren eröffnet neue Perspektiven, um ökologische Fragestellungen zu beantworten.

Mit der Methode der Laser-Ablations-Elektrospray-Ionisierung (LAESI), einem massenspektrometrischen bildgebenden Verfahren, ist es möglich, die Verteilung verschiedener chemischer Verbindung in einer biologischen Probe sichtbar zu machen. Dabei wird mit Hilfe einer Lasers ein winziger Teil der Probe durch lokale Erhitzung entfernt: Irgendwann platzt der angestrahlte Teil der Probe auf und etwas Dampf entweicht. Die dabei gebildete Dampfwolke wird anschließend durch einen elektrisch aufgeladenen Nebel ionisiert, sodass die im Dampf enthaltenen Substanzen vom Massenspektrometer aufgespürt werden können. „Die räumlich eingegrenzte Laser-Sondierung ermöglicht es uns, die chemischen Informationen so zusammenzutragen, dass ein Gesamtbild entsteht, ähnlich wie auch Fotos aus einzelnen Pixeln zusammengesetzt sind, “ beschreibt Studienleiter Aleš Svatoš die technischen Grundlagen des Verfahrens.

Die Verteilung von chemischen Verbindungen in Blüten, Blättern, Stängeln und anderen Pflanzenteilen ist für die ökologische Forschung von großer Bedeutung. Viele solcher Verbindungen sind sogenannte sekundäre Pflanzenstoffe, die von Pflanzen gebildet werden, um beispielsweise Bestäuber anzulocken sowie Fraßfeinde oder schädliche Erreger abzuwehren. Dabei spielt es nicht nur eine Rolle, dass bestimmte Moleküle im Gewebe angereichert werden, sondern auch wo dies der Fall ist. Ist ein bestimmter Abwehrstoff gleichmäßig in einem Pflanzenblatt verteilt oder gibt es spezielle Drüsen, die durch die Bildung chemischer Substanzen Schutz verleihen? In welchen Teilen der Außenhaut eines Insekts sind Gifte oder chemische Botenstoffe für die Kommunikation mit Artgenossen besonders stark angereichert? Auch die Wechselwirkungen zwischen verschiedenen Lebewesen auf molekularer Ebene sind von Interesse.

„Die größte Herausforderung bei derartigen Untersuchungen ist es, die Beschaffenheit einer Probe über den gesamten Analyseprozess hinweg zu erhalten. Leider kommt es oft vor, dass die Probenvorbereitung die Analyseergebnisse beeinflusst, weil die chemische Anordnung der Probe verändert wird. Üblicherweise werden im Vorbereitungsprozess  aus einer biologischen Probe dünne und flache Schnitte angefertigt, denn bislang konnten nur flache Proben gewährleisten, dass der Laser optimal fokussiert. Dies wiederum ist wichtig für zuverlässige Analyseergebnisse,“ fasst Benjamin Bartels, der Erstautor der Studie und Doktorand in der Arbeitsgruppe Massenspektrometrie, die Grenzen des bisherigen Verfahrens zusammen.

In der chemischen Ökologie haben viele biologische Proben eine unebene Oberfläche: Pflanzenblätter haben oftmals haarige Strukturen oder sie sind gewellt. Auch Raupen können haarig sein, immer sind sie jedoch rundlich und nicht flach. Benjamin Bartels und und Aleš Svatoš, der die Arbeitsgruppe Massenspektrometrie leitet, haben daher das LAESI-Verfahren an unebene Oberflächen angepasst, um die Verteilung von chemischen Substanzen auch auf  Proben mit ausgeprägten dreidimensionalen Formen abzubilden, ohne die Zuverlässigkeit klassischer Analysen aufs Spiel zu setzen.

Das neue Instrument misst das Höhenprofil der jeweiligen Probe vor der eigentlichen massenspektrometrischen Analyse aus. Die aufgezeichneten Höhenprofile werden für die Korrektur der Entfernung zwischen der fokussierenden Linse des Lasers und der Probenoberfläche genutzt. Auf diese Art und Weise wird ein wesentlicher Faktor für die zuverlässige Lasersondierung während des gesamten Experiments konstant gehalten und die Methode liefert auch für Proben mit dreidimensionalen Strukturen verlässliche Daten. „Dies bedeutet, dass wir die Verteilung von Molekülen auf biologischen Oberflächen eines wesentlich größeren Probenspektrums untersuchen können. Ich denke da beispielsweise an das Außenskelett von Insekten, Mikrobengemeinschaften in ihrer natürlichen Umgebung oder an den Vergleich der Inhalte einzelner Blatthaare einer Pflanze,“ erläutert Benjamin Bartels die Vorteile der Weiterentwicklung.

Die Forscher planen nun weitere Verbesserungen und Verfeinerungen der Methode, damit LAESI auch für Routine-Messungen an unebenen Oberflächen eingesetzt werden kann.

Fakten, Hintergründe, Dossiers
Mehr über MPI für chemische Ökologie
  • News

    Leibwächter im Darm mit chemischer Waffe

    Nützliche Bakterien im Darm von Schmetterlingsraupen produzieren einen antibakteriellen Wirkstoff und töten damit andere, für die Entwicklung der Raupen schädliche Bakterien ab. Ein internationales Team von Wissenschaftlern unter Leitung des Max-Planck-Instituts für chemische Ökologie in Je ... mehr

    Abhängigkeit kann ein evolutionärer Vorteil sein

    Es ist eine weitverbreitete Annahme, dass es für Lebewesen vorteilhaft ist möglichst unabhängig von anderen zu sein. Einem Forscherteam des Max-Planck-Instituts für chemische Ökologie ist es nun gelungen experimentell zu zeigen, dass es ganz im Gegenteil für Bakterien sinnvoll sein kann ihr ... mehr

    Architektur des Riechens

    Wissenschaftler des Max-Planck-Instituts für chemische Ökologie in Jena haben jetzt die Funktionseinheiten des Geruchszentrums, die für die Geruchswahrnehmung zuständig sind, im Hirn von Essigfliegen quantifiziert und kartiert. Sie fanden heraus, dass sich die sogenannten olfaktorischen Glo ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Evolution im Labor

    Lebewesen müssen sich fortwährend an ihre Umgebung anpassen, um darin zu bestehen. Verantwortlich für solche Anpassungen sind Änderungen im Erbgut. Paul Rainey vom Max-Planck-Institut für Evolutionsbiologie in Plön hat zusammen mit Kollegen aus Neuseeland in Laborexperimenten die Entstehung ... mehr

    Unkraut im Gehirn

    Alzheimer, Parkinson und Huntington – neurodegenerative Krankheiten haben eine Gemeinsamkeit: In den Nervenzellen der Patienten sammeln sich Proteinablagerungen an. Sind diese Aggregate erst einmal vorhanden, wuchern sie wie Unkraut. Ob und wie die Ablagerungen Nervenzellen schädigen und zu ... mehr

    Nucleolus erlaubt Vorhersage der Lebenserwartung

    Kann man einer Zelle ansehen wie alt sie ist? Und ist es möglich die Lebenszeit eines Tieres vorherzusehen? Wissenschaftler vom Max-Planck-Institut für Biologie des Alterns in Köln haben eine Verbindung zwischen der Größe des Nukleolus und der Lebenserwartung entdeckt. Diese kleine Struktur ... mehr

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. mehr

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? mehr

    Chaperone - Faltungshelfer in der Zelle

    In der Zelle geht es manchmal zu wie beim Brezelbacken: Damit ein Protein richtig funktionieren kann muss seine Aminosäurekette in die richtige Form gebracht werden. Franz-Ulrich Hartl erforscht, wie die sogenannten Chaperone als Faltungshelfer der Proteine wirken. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.