Meine Merkliste
my.bionity.com  
Login  

Hochauflösendes Spektrometer erkennt gestresste Pflanzen

ESA setzt auf Pflanzenforschung

23.11.2015

Copyright: Forschungszentrum Jülich

Unter Laborbedingungen liefert die Fluoreszenz wichtige Hinweise zum Pflanzenstoffwechsel. Hier ein Blatt der Juwelorchidee (Macodes petola).

Copyright: Forschungszentrum Jülich

Grün ist nicht gleich grün – die untere Flugzeug-Aufnahme mit den Messdaten des Spektrometers ,HyPlant’ zeigt farbkodiert die Fluoreszenzemission. Unterschiedliche Farben spiegeln die aktuelle Photosyntheseleistung bzw. akuten Stress wider.

Die Pflanzenforschung steht im Fokus ihrer nächsten Satellitenmission zur Erkundung der Erde, teilte die Europäische Weltraumorganisation ESA mit. In knapp sieben Jahren soll der neue Satellit starten und wertvolle Daten zur globalen Pflanzenproduktivität liefern. Sein Herzstück - ein hochauflösendes Spektrometer - zeigt zuverlässig an, wenn Pflanzen unter Stress stehen. Das Messprinzip des Spektrometers haben Jülicher Wissenschaftler mitentwickelt und getestet.

"Wir sind begeistert, dass sich die ESA für dieses relativ junge Forschungsfeld entschieden hat", sagt Prof. Dr. Uwe Rascher vom Jülicher Institut für Pflanzenwissenschaften (IBG-2). Der Satellit 'Fluorescence Explorer', kurz FLEX, wird globale Karten der aktuellen Pflanzenfluoreszenz liefern. Diese ist ein direkter Maßstab der Photosyntheseaktivität und somit der Produktivität von Pflanzen. Das Spektrometer an Bord dient aber nicht nur einer Bestandsaufnahme. Es erkennt Pflanzen, die unter Stress stehen, noch bevor das menschliche Auge Veränderungen wahrnimmt. Damit wird es ein wichtiges Werkzeug auch für Politik und Wirtschaft. Beispielsweise könnten Anbau und Ernte von Nutzpflanzen mithilfe der FLEX-Daten zukünftig optimiert werden.

Das Messprinzip und die wissenschaftlichen Grundlagen wurden in den vergangenen drei Jahren in mehreren Studien und Kampagnen geprüft. Dabei spielte das flugzeuggestützte Spektrometer HyPlant der Jülicher Pflanzenforscher eine wesentliche Rolle. "Wir haben in Europa und den USA sowohl bewirtschaftete Agrarflächen als auch Ökosysteme und Landschaften vom Flugzeug aus mit HyPlant erfolgreich untersucht", sagt Uwe Rascher. Gemeinsam mit Forschern aus Spanien, Italien, Frankreich, der Tschechischen Republik, den Niederlanden, der Schweiz, aus Kanada und den USA gelang es, das äußerst schwache Fluoreszenzsignal von Pflanzen im roten und nahen Infrarot-Bereich zuverlässig abzubilden.

Gleichzeitig zeigten die Ergebnisse, dass eine Verschiebung dieser Fluoreszenz eindeutige Stresssignale sind. "Trockenheit, Hitze, Luftverschmutzung, Parasitenbefall oder schlechte Bodenverhältnisse dämpfen die Photosyntheseaktivität von Pflanzen, und dies lässt sich mit HyPlant erstmals großflächig abbilden", erklärt Rascher. "Aus der Luft ist uns das im lokalen Maßstab gelungen, aus dem Orbit werden wir dann in der Lage sein, ein globales Bild zu erhalten, wie die Vegetation der Erde Photosynthese betreibt und dabei CO2 fixiert", fügt er an. Die geplante Auflösung von 300 x 300 Metern ist ein zusätzlicher Pluspunkt. Damit werden auch mittelgroße Anbau- und naturbelassene Flächen sichtbar, wie sie in weiten Teilen der Welt typisch sind. Mit HyPlant gelang es, das Messprinzip experimentell zu belegen. Für die extremen Bedingungen im All wird ein neues, hochspezialisiertes Spektrometer von den Industriepartnern der ESA entwickelt. Der Name steht auch schon fest: FLORIS – kurz für "Fluorescence Imaging Spectrometer".

Grundlage für die Messungen ist ein Phänomen, das als Chlorophyllfluoreszenz bekannt ist. Pflanzen gelingt es mithilfe des Farbmoleküls Chlorophyll, Sonnenlicht einzufangen und in Energie umzuwandeln. Diese nutzen sie, unter Einbeziehung von CO2 und Wasser, um Zucker und andere Stoffe herzustellen. Ein Teil der Energie verpufft jedoch in Form von Wärme und Fluoreszenz, also einer Lichtemission, die messbar ist. Uwe Rascher erklärt: "Vereinfacht kann man sagen, je mehr Licht die Pflanze einfängt und je mehr Photosynthese sie betreibt, desto intensiver ist das Fluoreszenzsignal. Ist die Pflanze jedoch gestresst und läuft die Photosynthese nicht optimal, verändert sich das Signal. Durch diese Änderungen können wir den Effekt von ungünstigen Umweltbedingungen auf Pflanzen direkt messen."

Wenn die FLEX-Mission 2022 startet, betritt die ESA weiteres Neuland. Geplant ist ein Tandemflug zweier Satelliten: FLEX soll in der gleichen Umlaufbahn wie einer der Sentinel-3 Satelliten positioniert werden. FLEX wird einem Erderkundungssatelliten der Sentinel-Familie exakt 6 Sekunden voraus fliegen. Der erste Sentinel-3 Satellit startet voraussichtlich im Dezember dieses Jahres und liefert dann unter anderem Daten zu Wolken, Aerosolen, Wasserdampf sowie der Oberflächentemperatur von Wasser und Land. Damit ergänzen sich die beiden Satelliten in idealer Weise: Sentinel-3 zeigt die Umwelt-Bedingungen auf, FLEX erfasst, was unsere Vegetation daraus macht.

Fakten, Hintergründe, Dossiers
  • Fluoreszenzspektrometer
Mehr über Forschungszentrum Jülich
  • News

    Dem HIV-Protein NEF auf der Spur

    Weltweit leben rund 37 Millionen Menschen mit einer HIV-Infektion. Bisher lässt sich die damit verbundene Krankheit, das erworbene Immunschwächesyndrom (AIDS), nur mit Medikamenten behandeln – aber nicht heilen. Damit bleibt das Humane Immundefizienz-Virus eine der größten Herausforderungen ... mehr

    Mechanismus des bakteriellen Geruchssinns entdeckt

    Wissenschaftler des Moskauer Instituts für Physik und Technologie (MIPT) haben in Zusammenarbeit mit Kollegen vom Forschungszentrum Jülich, dem Institut de Biologie Structurale (IBS) und der European Synchrotron Radiation Facility (ESRF) in Grenoble eine Erklärung für einen universellen Mec ... mehr

    Winziger Unterschied macht Alzheimer-Protein noch schädlicher

    Im Gehirn entstehende Verklumpungen des körpereigenen Proteins Amyloid-beta (Aβ) gelten als Ursache der Alzheimerschen Demenz. Weniger bekannt ist bisher eine besonders aggressive Variante des Proteins: "Pyroglutamat- Aβ", das in extrem hohem Tempo verklumpt, resistenter gegen Abbauprozesse ... mehr

  • Videos

    Zukunft ist unsere Aufgabe: Das Forschungszentrum Jülich

    Das Forschungszentrum Jülich betreibt interdisziplinäre Spitzenforschung in den Bereichen Energie und Umwelt sowie Information und Gehirn. Es stellt sich drängenden Fragen der Gegenwart und entwickelt Schlüsseltechnologien für morgen. mehr

    Chlorophyllfluoreszenz: Das Leuchten der Pflanzen

    „Ich glaube etwas erst, wenn ich es sehe“, betont Andreas Burkart. Dazu nimmt er Besucher gerne mit in einen abgedunkelten Raum im Erdgeschoss des Instituts. Auf dem Weg dorthin zupft er rasch ein Blatt einer Birkenfeige ab, die auf dem grauen Institutsflur für etwas Behaglichkeit sorgen so ... mehr

    Ein 3-D-Modell des menschlichen Gehirns

    Jülicher Wissenschaftler entwickeln ein 3-D-Modell des menschlichen Gehirns. Dafür analysieren sie Tausende von hauchdünnen histologischen Hirnschnitten mit Hilfe von Mikroskopen und modernen Bildauswertungsmethoden und rekonstruieren diese anschließend dreidimensional am Computer. Die hier ... mehr

  • Firmen

    Forschungszentrum Jülich GmbH, Projektträger Jülich

    mehr

  • Forschungsinstitute

    Forschungszentrum Jülich GmbH

    Das Forschungszentrum Jülich betreibt interdisziplinäre Spitzenforschung zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Gesundheit, Energie & Umwelt sowie Informationstechnologie. Kombiniert mit den beiden Schlüsselkompetenzen Physik und Supercomputing werden in Jül ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.