11-Jan-2021 - American Chemical Society (ACS)

Detecting CRISPR/Cas gene doping

An initial step toward a test to pinpoint athletes trying to gain an unfair advantage

All athletes want to be at the top of their game when they compete, but some resort to nefarious approaches to achieve peak muscle growth, speed and agility. Recent developments in gene editing technology could tempt athletes to change their DNA to get an edge. Now, researchers reporting in ACS' Analytical Chemistry demonstrate first steps toward detecting this type of doping both in human plasma and in live mice.

The gene editing method called CRISPR/Cas is a popular way for scientists to precisely change the DNA in many organisms, and it recently gained even more attention when key developers of the method were awarded the 2020 Nobel Prize in Chemistry. With this method, researchers add an RNA molecule and a protein into cells. The RNA molecule guides the protein to the appropriate DNA sequence, and then the protein cuts DNA, like a pair of scissors, to allow alterations. Despite the ethical concerns that have been raised about the method's potential application in humans, some athletes could ignore the risks and misuse it to alter their genes. Because CRISPR/Cas changes DNA, it is considered "gene doping" and is banned by the World Anti-Doping Agency, an independent international organization. A sufficient method to detect CRISPR/Cas gene editing needs to be developed, however. So, Mario Thevis and colleagues wanted to see whether they could identify the protein most likely to be used in this type of doping, Cas9 from the bacteria Streptococcus pyogenes (SpCas9), in human plasma samples and in mouse models.

The team spiked the SpCas9 protein into human plasma, then isolated the protein and cut it into pieces. When the pieces were analyzed by mass spectrometry, the researchers found that they could successfully identify unique components of the SpCas9 protein from the complex plasma matrix. In another experiment, inactivated SpCas9, which can regulate gene expression without altering DNA, was spiked into human plasma samples. With a slight modification, the method allowed the team to purify and detect the inactive form. Finally, the team injected mice with SpCas9 and showed that their concentrations peaked in circulating blood after 2 hours and could be detected up to 8 hours after administration into muscle tissue. The researchers say that although much work still needs to be done, this is an initial step toward a test to pinpoint athletes trying to gain an unfair advantage.

Facts, background information, dossiers
More about American Chemical Society
  • News

    Termite gut microbes could aid biofuel production

    Wheat straw, the dried stalks left over from grain production, is a potential source of biofuels and commodity chemicals. But before straw can be converted to useful products by biorefineries, the polymers that make it up must be broken down into their building blocks. Now, researchers repo ... more

    What the Biden-Harris administration means for chemistry

    The inauguration of Joe Biden and Kamala Harris marks a new era for science policy in the U.S. and beyond. The new administration has inherited a global pandemic and worsening climate change, among other science-related issues. A cover story in Chemical & Engineering News (C&EN), the weekly ... more

    Max Planck director receives science award for production of affordable drugs

    The American Chemical Society (ACS) has awarded Peter H. Seeberger and two colleagues the "ACS Award for Affordable Green Chemistry" for developing a particularly efficient chemical process for producing artemisinin. All the components needed to produce the active ingredient come from natur ... more

  • Videos

    What Makes Rubber Rubbery?

    Reactions is looking at sports science today. Sports balls owe their reliability to an unusual polymer. Learn about the chemistry of rubber the all-star’s best friend! more

    Dragon's Blood Could Save Your Life

    This week Reactions is looking at chemistry in bizarre places that could save your life. The science within the blood of the Komodo dragon or in a horseshoe crab can help with antibiotic resistance. But it doesn't end there, so we're taking a closer look at other wild places in nature that ... more

    Why is Olive Oil Awesome?

    Whether you sop it up with bread or use it to boost your cooking, olive oil is awesome. But a lot of chemistry goes on in that bottle that can make or break a product. Take the “extra virgin” standard: Chemistry tells us that a higher free-fatty-acid content leads to a lower grade, less tas ... more