25-Aug-2020 - Empa (Eidgenössische Materialprüfungs- und Forschungsanstalt)

Aerogel – the micro structural material of the future

Numerous new application possibilities in the high-tech industry, for example in microelectronics, robotics, biotechnology and sensor technology

Aerogel is an excellent thermal insulator. So far, however, it has mainly been used on a large scale, for example in environmental technology, in physical experiments or in industrial catalysis. Empa researchers have now succeeded in making aerogels accessible to microelectronics and precision engineering: An article in the latest issue of the scientific journal "Nature" shows how 3D-printed parts made of silica aerogels and silica composite materials can be manufactured with high precision. This opens up numerous new application possibilities in the high-tech industry, for example in microelectronics, robotics, biotechnology and sensor technology.

Behind the simple headline "Additive manufacturing of silica aerogels" - the article was published on July 20th in the scientific journal "Nature" - a groundbreaking development is hidden. Silica aerogels are light, porous foams that provide excellent thermal insulation. In practice, they are also known for their brittle behaviour, which is why they are usually reinforced with fibres or with organic or biopolymers for large-scale applications. Due to their brittle fracture behaviour, it is also not possible to saw or mill small pieces out of a larger aerogel block. Directly solidifying the gel in miniaturised moulds is also not reliably - which results in high scrap rates. This is why aerogels have hardly been usable for small-scale applications.

Stable, well-formed microstructures

The Empa team led by Shanyu Zhao, Gilberto Siqueira, Wim Malfait and Matthias Koebel have now succeeded in producing stable, well-shaped microstructures from silica aerogel by using a 3D printer. The printed structures can be as thin as a tenth of a millimeter. The thermal conductivity of the silica aerogel is just under 16 mW/(m*K) - only half that of polystyrene and even significantly less than that of a non-moving layer of air, 26 mW/(m*K). At the same time, the novel printed silica aerogel has even better mechanical properties and can even be drilled and milled. This opens up completely new possibilities for the post-processing of 3D printed aerogel mouldings.

With the method, for which a patent application has now been filed, it is possible to precisely adjust the flow and solidification properties of the silica ink from which the aerogel is later produced, so that both self-supporting structures and wafer-thin membranes can be printed. As an example of overhanging structures, the researchers printed leaves and blossoms of a lotus flower. The test object floats on the water surface due to the hydrophobic properties and low density of the silica aerogel - just like its natural model. The new technology also makes it possible for the first time to print complex 3D multi-material microstructures.

Insulation materials for microtechnology and medicine

With such structures it is now comparatively trivial to thermally insulate even the smallest electronic components from each other. The researchers were able to demonstrate the thermal shielding of a temperature-sensitive component and the thermal management of a local "hot spot" in an impressive way. Another possible application is the shielding of heat sources inside medical implants, which should not exceed a surface temperature of 37 degrees in order to protect body tissue.

A functional aerogel membrane

3D printing allows multilayer/multi-material combinations to be produced much more reliably and reproducibly. Novel aerogel fine structures become feasible and open up new technical solutions, as a second application example shows: Using a printed aerogel membrane, the researchers constructed a "thermos-molecular" gas pump. This permeation pump manages without any moving parts at all and is also known to the technical community as a Knudsen pump, named after the Danish physicist Martin Knudsen. The principle of operation is based on the restricted gas transport in a network of nanoscale pores or one-dimensional channels of which the walls are hot at one end and cold at the other. The team built such a pump from aerogel, which was doped on one side with black manganese oxide nanoparticles. When this pump is placed under a light source, it becomes warm on the dark side and starts to pump gases or solvent vapours.

Air purification without moving parts

These applications show the possibilities of 3D printing in an impressive way: 3D printing turns the high-performance material aerogel into a construction material for functional membranes that can be quickly modified to suit a wide range of applications. The Knudsen pump, which is driven solely by sunlight, can do more than just pump: If the air is contaminated with a pollutant or an environmental toxin such as the solvent toluene, the air can circulate through the membrane several times and the pollutant is chemically broken down by a reaction catalyzed by the manganese oxide nanoparticles. Such sun-powered, autocatalytic solutions are particularly appealing in the field of air analysis and purification on a very small scale because of their simplicity and durability.

Empa researchers are now looking for industrial partners who want to integrate 3D-printed aerogel structures into new high-tech applications.

Facts, background information, dossiers
  • aerogels
  • microelectronics
  • 3D printing
  • microstructures
  • silica gels
  • insulation materials
More about Empa
  • News

    Biofuels and sophisticated materials cycles thanks to bio-templating

    Blue-green algae are among the oldest living creatures on Earth and have perfected the use of sunlight over billions of years. Empa scientists have now equipped these humble unicellular organisms with semiconductor coatings to create mini power plants, which supply biofuels and are photocat ... more

    A wound dressing that kills bacteria

    In order to combat bacterial wound infections, Empa researchers have developed cellulose membranes equipped with antimicrobial peptides. Initial results show: The skin-friendly membranes made of plant-based materials kill bacteria very efficiently. If germs invade a wound, they can trigger ... more

    Nanosafety research without animal experiments

    In order to reduce the number of animal experiments in research, alternative methods are being sought. This is a particular challenge if the safety of substances that have hardly been studied is to be ensured, for instance, the completely new class of nanomaterials. To accomplish just that, ... more

  • Research Institutes

    Empa - Swiss Federal Laboratories for Materials Testing and Research

    Empa is an interdisciplinary research and services institution for material sciences and technology development within the ETH Domain. Empa’s research and development activities are oriented to meeting the requirements of industry and the needs of our society, and link together applications ... more

    Empa (Eidgenössische Materialprüfungs- und Forschungsanstalt)

    Empa is an interdisciplinary research and services institution for material sciences and technology development within the ETH Domain. Empa’s research and development activities are oriented to meeting the requirements of industry and the needs of our society, and link together applications ... more

    Empa

    Empa is an interdisciplinary research and services institution for material sciences and technology development within the ETH Domain. Empa’s research and development activities are oriented to meeting the requirements of industry and the needs of our society, and link together applications ... more