11-Aug-2020 - Julius-Maximilians-Universität Würzburg

New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women and one in five men aged over 50 suffer from osteoporotic bone fractures.

Osteoporosis is caused by excessive activity of bone resorbing cells, while activity of bone-forming cells is reduced. In healthy individuals, a balanced activity of these two cell types allows constant bone turnover to maintain healthy and strong bones.

In osteoporosis, disproportionate bone resorption leads to low bone mineral density and consequently weak and fracture-prone bones. When new bone formation is unable to catch up with bone loss, bone eventually weakens, and becomes more prone to fractures.

Current medicines have disadvantages

Most current osteoporosis therapies include the use of bisphosphonates, which block the activity of bone resorbing cells, and thus prevent excessive bone resorption. However, prolonged treatment with these drugs eliminates the necessary bone turn-over leading to increased fracture risk and other unwanted side effects. Therefore, there is an urgent need to develop new strategies that overcome the limitations of current treatments.

There are now new progresses in this area. They have been developed in a cooperation of Professors Christoph Winkler (Department of Biological Sciences, National University of Singapore, NUS) and Manfred Schartl (Biocenter, Julius-Maximilians-Universität Würzburg, JMU, Germany); the results have been published in the journal PNAS.

Small protein mobilises bone resorbing cells

Using genetic analysis in a small laboratory fish model, the Japanese medaka (Oryzias latipes), the research team identified a small protein, the chemokine CXCL9, that, under osteoporotic conditions, diffuses towards reservoirs that hold bone resorbing cell precursors. These precursors produce a receptor, CXCR3, on their cell surface. Upon activation by CXCL9, the precursors are mobilised and migrate long distances in a highly directed fashion towards the bone matrix, where they start resorbing bone.

Known inhibitors are highly effective

Both CXCL9 and its receptor CXCR3 have long been known to modulate the migration of immune cells to inflammation sites, for example in psoriasis and rheumatoid arthritis. There are several chemical inhibitors blocking CXCR3 activity that have had little success in clinical tests for the treatment of psoriasis. The research team showed that these inhibitors are highly effective in blocking bone resorbing cells‘ recruitment and protecting bone from osteoporotic insult.

Finely tuned therapies seem possible

The conclusion of the professors Schartl and Winkler: “Our studies provided new avenues to osteoporosis therapy. The new strategy allows a fine-tuned modulation of osteoclast numbers that are recruited to bone matrix rather than a widespread blockage of osteoclast activity as in traditional therapies. This has major advantages as excessive bone resorption can be prevented in a targeted manner but normal bone turn-over will still continue. This offers potential to avoid increased fracture risks in osteoporosis patients and to maintain healthy bone for improved quality of life.”

Facts, background information, dossiers
More about Uni Würzburg
  • News

    Small RNA as a Central Player in Infections

    More than half of the world's population carries the bacterium Helicobacter pylori in their stomach mucosa. It often causes no problems throughout life, but sometimes it can cause inflammation, and in some cases, it can even lead to the development of stomach cancer. Helicobacter pylori use ... more

    A cancer shredder

    The villain in this drama has a pretty name: Aurora – Latin for dawn. In the world of biochemistry, however, Aurora (more precisely: Aurora-A kinase) stands for a protein that causes extensive damage. There, it has been known for a long time that Aurora often causes cancer. It triggers the ... more

    Hurdle of microscopy overcome

    High-resolution microscopy makes it theoretically possible to image cell structures with a resolution of a few nanometres. However, this has not yet been possible in practice. The reason for this is that antibodies carrying a fluorescent dye are usually used to mark the cell structures. The ... more