Meine Merkliste
my.bionity.com  
Login  

Transkranielle Magnetstimulation



Die transkranielle Magnetstimulation, kurz TMS, ist eine nicht-invasive Technologie, bei der mithilfe starker Magnetfelder Bereiche des Gehirns sowohl stimuliert als auch gehemmt werden können. Damit ist TMS ein nützliches Werkzeug in der neurowissenschaftlichen Forschung. Darüber hinaus wird die transkranielle Magnetstimulation in beschränktem Umfang in der neurologischen Diagnostik eingesetzt oder für die Behandlung von neurologischen Erkrankungen wie des Tinnitus, Apoplexie, der Epilepsie oder der Parkinson-Krankheit vorgeschlagen, ebenso in der Psychiatrie für die Therapie affektiver Störungen, allen voran der Depression. Aus ersten durchgeführten Studien lässt sich noch nicht erkennen, in wie weit die teilweise recht hohen klinischen Erwartungen an die transkranielle Magnetstimulation berechtigt sind. [1]

Inhaltsverzeichnis

Geschichte der TMS

Erste transkranielle (v. lat. transkraniell = durch den Schädel hindurch) Magnetstimulationen gelangen dem Arzt und Physiker Jacques-Arsène d'Arsonval Ende des 19. Jahrhunderts an der französischen Wissenschaftsakademie in Paris. Er nutzte Starkstromspulen, wie sie in elektrischen Kraftwerken benutzt werden, um sich selbst und seine Probanden zu stimulieren, und konnte so nachweisen, dass ein sich veränderndes Magnetfeld in menschlichen Geweben einen Stromfluss induziert. Es folgten, vor allem in Selbstversuchen durchgeführte, Experimente mit sehr großen Spulen, die den Kopf der Probanden oft vollständig umschlossen. Die Probanden sahen lebhafte Phosphene (Magnetophosphene), und erlebten Kreislaufstörungen und Schwindelattacken bis hin zu Bewusstseinsverlusten. Neuere Forschungen gehen davon aus, dass die beobachteten Effekte nicht durch die Stimulation des Gehirns sondern durch direkte Stimulation der Sehnerven und der Retina zustande kamen[2].

An der University of Sheffield wurde von Anthony Barker 1985 die moderne Variante der Transkraniellen Magnetstimulation vorgestellt. Sie ist auf die technische Entwicklung leistungsfähiger Kondensatoren zurückzuführen und verwendet deutlich kleinere Spulen, die die Großhirnrinde nur in einem kleinen Bereich stimulieren. Die Magnetstimulation des schädelnahen Kortex ist seitdem nahezu ohne Unannehmlichkeiten für die Probanden bzw. Patienten und technisch (in Anspielung auf Sherlock Holmes) "simplicity itself" [3].

Technische Grundlagen

Die TMS nutzt das physikalische Prinzip der elektromagnetischen Induktion. Eine tangential am Schädel angelegte Magnetspule erzeugt ein kurzes Magnetfeld der Dauer von 200-600 µs mit einer magnetischen Flussdichte von bis zu 3 tesla. Nach dem Induktionsgesetz führt das sich verändernde Magnetfeld zur Induktion eines, ebenfalls kurzen, elektrischen Feldes in stromleitenden Geweben im Schädelinneren. Die Stärke dieses elektrischen Feldes, und somit die Wirkung der TMS, fällt mit der Entfernung von der Spule exponentiell ab und hängt von den Eigenschaften des Kondensatorstromes und der Spule ab. Verwendet werden sogenannte Rundspulen und Doppelspulen. Letztere bestehen aus zwei Rundspulen, die sich jeweils am Rand berühren oder überlagern. Dadurch wird das Magnetfeld beider Teilspulen in dem Mittelteil der Spule überlagert, und somit verstärkt. Doppelspulen werden aufgrund ihrer Form auch als Achtspulen bezeichnet.

Elektrotechnisch werden bei gängigen Magnetstimulatoren grundsätzlich monophasische von biphasischen Schaltungen unterschieden. Ein Schwingstromkreis wird von einem leistungsfähigen Kondensator gespeist und über einen starkstromkompatiblen Gleichrichterschalter (Thyristor) geschlossen. Nach einer halben Schwingung kehrt sich die Stromrichtung des Schwingkreises um (der Strom "schlägt zurück"). In der monophasischen Schaltung wechselt der Kondensator nach einer Viertelschwingung seine Polarität, und kann deshalb nicht durch den zurückschwingenden Strom wieder aufgeladen werden. Stattdessen wird die Stromschwingung über eine gleichrichtende Diode und einen elektrischen Widerstand abgefangen und exponentiell vermindert. In der biphasischen Schaltung hingegen wird der Kondensator vom zurückschwingenden Strom über eine gleichrichtende Diode auf submaximale Kapazität wieder aufgeladen und nach einer halben Schwingung abgeschaltet. In der Spule resultiert daher in der monophasischen Schaltung ein exponentiell abklingender Strom, in der biphasischen Schaltung ein Strom, der einer gedämpften Sinus-Vollschwingung ähnelt.

Ebenfalls unterschieden wird die Stimulation mit einzelnen Magnetfeld-Pulsen von der Stimulation mit Impuls-Salven, die so genannte repetitive Magnetstimulation (rTMS). Für die rTMS werden vor allem biphasische Strompulsformen verwendet. Technisch sind heute Salven von bis zu 100 Hz möglich. Grenzen werden der rTMS heute vor allem durch die Erhitzung der Spule gesetzt. An der Entwicklung gekühlter Spulen wird gearbeitet.

Wirkung

Die Magnetstimulation führt im Gehirn zur Auslösung von Aktionspotenzialen. Der genaue Mechanismus ist leider trotz intensiver Forschung seit Einführung der Methode 1985 nach wie vor nicht in allen Einzelheiten verstanden.

Ab einer bestimmten Magnetfeldstärke wird ein ausreichend großes elektrisches Feld in der schädelnahen Großhirnrinde erzeugt, um Neuronen zu depolarisieren. Diese Depolarisation findet am ehesten am Axon statt. Verläuft das induzierte elektrische Feld in Verlaufsrichtung des Axons, so ist die benötigte Magnetfeldstärke am kleinsten. Die Magnetfeldstärke, die gerade benötigt wird, um eine Wirkung am Neuron zu bewirken, nennt man in der Neurophysiologie Erregungsschwelle. Nervenenden, -verzweigungen und vor allem -biegungen haben eine besonders niedrige Erregungsschwelle.

Anwendung

Verwendet wird die TMS in der neurowissenschaftlichen Forschung, in der Neurologie und in der Psychiatrie. Von wissenschaftlichem Interesse ist vor allem die kurzfristige Störung einer kleinen Hirnregion, um deren physiologische Funktion zu untersuchen. So kann man mit der Magnetstimulation über dem motorischen Kortex Muskelzuckungen auslösen, über der Sehrinde kann man Phosphene, aber auch Skotome erzeugen. Die rTMS von Hirnregionen, die für Sprache zuständig sind, kann für einige Minuten zur Verschlechterung der sprachlichen Ausdrucksfähigkeit der Probanden führen.

Klinische Anwendungen beschränken sich meistens auf Einzelpulse über dem motorischen Kortex oder auf repetitive Stimulation:

  • Die Auslösung von Muskelzuckungen durch Stimulation des motorischen Kortex wird in der Neurologie diagnostisch genutzt. Sie führen zu elektrischen Potenzialen (motorisch evozierte Potenziale; MEP), die mit Elektroden relativ einfach abzuleiten sind. Bestimmte Erkrankungen des Gehirns und des Rückenmarkes wie die Multiple Sklerose führen zu Veränderungen der MEP, die deshalb eine wichtige diagnostische Stütze darstellt. Ebenso von diagnostischem Interesse ist die Veränderung von Reizschwellen bei verschiedenen neurologischen Erkrankungen wie der Migräne oder der Epilepsie. Auch die Anwendung von Psychopharmaka oder Drogen führt zu Veränderungen der Reizschwelle, die mit der TMS messbar sind.
  • Die rTMS kann zu einer Gewöhnung (Habituation) an die Stimulation führen, wodurch es zu einer längerfristigen Veränderung der Aktivität der Gehirnrinde im stimulierten Bereich kommen kann. So kann man die Bewegungsfähigkeit von Probanden durch rTMS des motorischen Kortex für einige Minuten verschlechtern. Ebenfalls verändern kann man die Aktivität des präfrontalen Cortex, was man bei der Behandlung der Depression in der Psychiatrie zu nutzen versucht. Die antidepressive Wirkung soll bei den Patienten für einige Tage anhalten, ist jedoch nicht ausreichend wissenschaftlich gesichert.

In der wissenschaftlichen Forschung ist die Bandbreite der Anwendungen breiter.

  • Mittels Einzelpulsen lassen sich zeitlich sehr genau kontrolliert Hirnareale beeinflussen. Dies erlaubt direkt mit bestimmten Verarbeitungsschritten (z.B. im visuellen System) zu interferieren und somit diese Verarbeitungsschritte räumlich und zeitlich (relativ zur Stimulusdarbietung) genau zu bestimmen. Der Nachteil des Einzelpulses ist seine geringe Energie, so dass sich oftmals nur sehr schwache Reize in ihrer Verarbeitung stören lassen, oder die Störung sehr gering ausfällt.
  • Mit dem Doppelpuls (paired pulse) Paradigma behält man noch einen Großteil der zeitlichen Präzision bei, kann aber wesentlich größeren Einfluss auf die neuronale Verarbeitung nehmen.
  • Tetanische Stimulation hat sich in der Vergangenheit als nützlich erwiesen neuronale Verbindungen in ihrer Stärke zu verbessern, da es geeignet ist Langzeitpotenzierung hervorzurufen. Tetanische Stimulation besteht aus mehreren kurzen Salven (von 50-100 Hz für 100-1000 ms), die durch ein längeres Zeitinterval (Sekunden) voneinander zeitlich getrennt sind. Hirnregionen, die nach tetanischer Stimulation eine größere Synchronizität ihrer Aktivität aufweisen als vorher sind daher vermutlich Teil eines Netzwerkes.
  • repetitive Stimulation (rTMS) wird in der Forschung ähnlich eingesetzt, wie in der klinischen Anwendung.
  • Eine weitere Möglichkeit, die wiederum aus jeder der angeführten Anwendungen bestehen kann, ist die simultane Stimulation verschiedener Hirnarealen mit zwei oder mehr Spulen um den Einfluss der Areale aufeinander oder ihre Rolle in einem Netzwerk genau studieren zu können.

Risiken und Nebenwirkungen

Probanden und Patienten, die vor einer TMS stehen, sollten ihren behandelnden Arzt auf Risiken und Nebenwirkungen ansprechen. Die hier beschriebenen Risiken und Nebenwirkungen können nur einen Überblick verschaffen. Der behandelnde Arzt wird in jedem einzelnen Fall entscheiden müssen, ob eine Person für die TMS geeignet ist, oder nicht.

Seit Einführung der Magnetstimulation 1985 sind kaum Nebenwirkungen beobachtet worden. Die häufigste Nebenwirkung, vor allem bei Mitstimulation von Muskulatur auftretend, sind vorübergehende Kopfschmerzen. Am gefürchtetsten ist jedoch das sehr seltene Auftreten eines epileptischen Anfalles bei rTMS. Deshalb wurden 1998 in einem Konsens strenge Anwendungsvorschriften für die TMS erarbeitet.

Weitere, vor allem seltene, Nebenwirkungen müssen durch die weitere sorgfältige wie langfristige Beobachtung während und nach Anwendung der TMS in Forschung und Klinik herausgefunden werden. Schon aus diesem Grund kann diese Liste nicht vollständig sein.

Literatur

  • Barker AT, Jalinous R, Freeston IL: Non-invasive magnetic stimulation of human motor cortex. Lancet 1985;1:1106-1107
  • Zyss T: Will electroconvulsive therapy induce seizures: magnetic brain stimulation as hypothesis of a new psychiatric therapy. Psychiatr Pol 1992;26(6):531-41
  • Höflich G et al.: Application of transcranial magnetic stimulation in treatment of drug-resistant major depression: a report of two cases. Hum Psychopharmacol 1993;8:361-365
  • Fox P et al.: Imaging human intracerebral connectivity by PET during TMS. Neuroreport 1997;8:2787-2791
  • Brandt SA, Ploner CJ, Meyer BU: Repetitive transkranielle Magnetstimulation. Nervenarzt 1997;68:778-784
  • Paus T et al.: Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial mangetic stimulation of the human sensorimotor cortex. J Neurophysiol 1998;79(2):1102-7
  • Post A, Muller MB, Engelmann M, Keck ME: Repetitive transcranial magnetic stimulation in rats: evidence for a neuroprotective effect in vitro and in vivo. European Journal of Neuroscience 1999; 11(9):3247-3254
  • Eschweiler GW, Plewnia C, Bartels M: Which Patients with Major Depression Benefit from Prefrontal Repetitive Magnetic Stimulation. Fortschr Neurol Psychiatr 2001;69(9):402-409
  • Evers S, Hengst K, Pecuch PW: The impact of repetitive transcranial magnetic stimulation on pituitary hormone levels and cortisol in healthy subjects. J Affect Disord 2001;66(1):83-8
  • Strafella AP, Paus T, Barrett J, Dagher A: Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 2001;21(15):RC157
  • Smesny S et al.: Repetitive Transkranielle Magnetstimulation (rTMS) in der Akut- und Langzeittherapie bei therapieresistenter Depression. Nervenarzt 2001;72(9):734-8. German
  • Szuba MP et al.: Acute mood and thyroid stimulating hormone effects of transcranial magnetic stimulation in major depression. Biol Psychiatry 2001;50(1):22-7
  • Peschina W, Conca A, Konig P, Fritzsche H, Beraus W: Low frequency rTMS as an add-on antidepressive strategy: heterogeneous impact on 99m Tc-HMPAO and 18 F-FDG uptake as measured simultaneously with the double isotope SPECT technique. Pilot study. Nucl Med Commun 2001;22(8):867-73
  • Cohrs S, Tergau F, Korn J, Becker W, Hajak G: Suprathreshold repetitive transcranial magnetic stimulation elevates thyroid-stimulating hormone in healthy male subjects. J Nerv Ment Dis 2001;189(6):393-7
  • Manes F et al.: A controlled study of repetitive transcranial magnetic stimulation as a treatment of depression in the elderly. Int Psychogeriatr 2001;13(2):225-31
  • Catafau AM et al.: SPECT mapping of cerebral activity changes induced by repetitive transcranial magnetic stimulation in depressed patients. A pilot study. Psychiatry Res 2001 May 30;106(3):151-60
  • Seemann O, Köpf G: Der Einsatz der repetitiven transkraniellen Magnetstimulation in der Psychiatrie. NeuroDate 2002;3:25-27
  • Eschweiler GW, Plewnia C, Bartels M: Gemeinsamkeiten und Unterschiededer therapeutischen transkraniellen Magnetstimulation und der Elektrokrampftherapie. Nervenheilkunde 2003;22:189-95
  • Erhardt A et al.: Repetitive transcranial magnetic stimulation increasesthe release of dopamine in the nucleus accumbens shell of morphine-sensitized rats during abstinence. Neuropsychopharmacology 2004;Jun 9
  • Seemann O: repetitive Transkranielle Magnetstimulation. NeuroDate2006;6:13-14

Einzelnachweise

  1. Ridding MC & Rothwell, JC. Is there a future for therapeutic use of transcranial magnetic stimulation? Nature Reviews Neuroscience 8,2007: 559-567
  2. L.A. Geddes, d'Arsonval, Physicial and Inventor. In: IEEE Engineering in Medicine and Biology, Juli/August 1999, Seiten 118-122
  3. Barker AT, Jalinous R, Freeston IL: Non-invasive magnetic stimulation of human motor cortex. Lancet 1985;1:1106-1107
Bitte beachten Sie den Hinweis zu Gesundheitsthemen!
 
Dieser Artikel basiert auf dem Artikel Transkranielle_Magnetstimulation aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.