22-Nov-2019 - American Chemical Society (ACS)

4D imaging with liquid crystal microlenses

Most images captured by a camera lens are flat and two dimensional. Increasingly, 3D imaging technologies are providing the crucial context of depth for scientific and medical applications. 4D imaging, which adds information on light polarization, could open up even more possibilities, but usually the equipment is bulky, expensive and complicated. Now, researchers reporting in ACS Nano have developed self-assembling liquid crystal microlenses that can reveal 4D information in one snapshot.

Polarized light contains waves that undulate in a single plane, whereas unpolarized light, such as that from the sun, contains waves that move in every direction. Light can become polarized by reflecting off objects, and detecting this type of light could reveal hidden information. For example, cancer cells can reflect polarized light differently than healthy tissues. Wei Hu, Yan-Qing Lu and colleagues wanted to develop a portable, inexpensive and easy-to-use microlens to simultaneously acquire 3D space and polarization information, thereby producing 4D images.

To make their microlenses, the researchers used liquid crystals, materials found in most electronic displays. With a self-assembly process, they patterned arrays of liquid crystal microlenses into concentric circles. The researchers used a polarized optical microscope to image objects, such as a cross or the letter "E," under different directions of linearly polarized light. Microlenses in the array imaged the object differently, depending on their distance from the object (depth) and the direction of polarized light, producing 4D information. Although the resolution needs to be improved, the technique could someday be used in applications such as medical imaging, communications, displays, information encryption and remote sensing, the researchers say.

Facts, background information, dossiers
  • microlenses
More about American Chemical Society
More about Nanjing University
  • News

    Imprinted Spheres Fight Breast Cancer

    A particularly aggressive, metastasizing form of cancer, HER2-positive breast cancer, may be treated with nanoscopic particles “imprinted” with specific binding sites for the receptor molecule HER2. As reported by Chinese researchers in the journal Angewandte Chemie, the selective binding o ... more

    Brain process takes paper shape

    A paper-based device that mimics the electrochemical signalling in the human brain has been created by a group of researchers from China. The thin-film transistor (TFT) has been designed to replicate the junction between two neurons, known as a biological synapse, and could become a key com ... more

    Designing an acoustic diode

    Most people know about ultrasound through its role in prenatal imaging: those grainy, grey outlines of junior constructed from reflected sound waves. A new technology called an "acoustic diode," envisioned by researchers in China's Nanjing University, may dramatically improve future ultraso ... more