My watch list
my.bionity.com  
Login  

Immune System Upgrade: nanoparticles act as artificial enzymes

Catalytic immunotherapy for cancer

30-Oct-2019

© Wiley-VCH

Theoretically, our immune system could detect and kill cancer cells. Unfortunately, tumors are well armed to fight these attacks. Despite modern cancer treatments, metastases and relapses remain a major problem. Increasing anti-tumor immunity might now be made possible, thanks to copper telluride nanoparticles that mimic enzymes, especially under NIR-II light irradiation. This induces oxidative stress in tumor cells, quashing their immunosuppressive status and triggering inflammatory processes, as Chinese scientists report in the journal Angewandte Chemie.

So-called “Nanoenzymes” are hot candidates for treatments called “catalytic immunotherapy”. These nanoparticles have structures completely different from biological enzymes but mimic the enzymes’ catalytic activity. They are easier to prepare than natural enzymes, as well as being less expensive and more stable.

Researchers working with Wansong Chen and You-Nian Liu at Central South University (Changsha, Hunan, China) have now introduced a new nanoenzyme: copper telluride nanoparticles (Cu2-xTe) mimic the activities of the enzymes glutathione oxidase and peroxidase. The activity of this nanoenzyme is due to the copper ions, which switch between two oxidation states. The substrate is glutathione, an antioxidant that is found in significantly higher concentrations in tumor cells than in healthy ones. This is why the nanoenzymes are only active in tumor cells. In addition, they absorb NIR-II light (near-infrared light with a wavelength between 1000 and 1350 nm), causing their local environment to heat up. This effect strongly increases the enzyme-like activity of the nanoenzymes. In treatment, the NIR-II irradiation could be selectively applied to the tumor.

Experiments in tumor-cell cultures and with tumor-bearing mice demonstrated that use of the nanoenzymes and NIR-II irradiation triggers a whole cascade of cellular responses that greatly increase the oxidative stress within the tumor, which ultimately leads to cell death. At the same time, the suppression of immunological processes in the microenvironment around the tumor is lifted. Instead, substances that promote inflammation are released and an immune response is triggered. This is supported by the elevated concentration of effector T cells observed by the researchers. The immune system is thus able to learn to defend itself against metastasis and to build an “immunological memory” to prevent relapses.

Facts, background information, dossiers
More about Central South University
More about Angewandte Chemie
  • News

    Little Heaps of Silver, All Wrapped Up

    Nanoclusters are little “heaps” of a few atoms that often have interesting optical properties and could become useful probes for imaging processes in areas such as biomedicine and diagnostics. In the journal Angewandte Chemie, researchers have introduced a nanocluster of 16 silver atoms sta ... more

    Analysis and Detoxification in One Step

    Many industrial and agriculture processes use chemicals that can be harmful for workers and the ecosystems where they accumulate. Researchers from Thailand have now developed a bioinspired method to detect and detoxify these chemicals in only one step. As they report in the journal Angewand ... more

    Direct detection of circulating tumor cells in blood samples

    Tumor cells circulating in blood are markers for the early detection and prognosis of cancer. However, detection of these cells is challenging because of their scarcity. In the journal Angewandte Chemie, scientists have now introduced an ultrasensitive method for the direct detection of cir ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE