Meine Merkliste
my.bionity.com  
Login  

Das Pyrenoid ist ein Kohlenstoff bindender Flüssigkeitstropfen

26.09.2017

© Krystal Klaus

Pflanzen und Algen nutzen das Enzym Rubisco zur Fixierung von Kohlendioxid, den sie der Atmosphäre entziehen und in Biomasse umwandeln. Allerdings verläuft diese Reaktion langsam und Rubisco kann unerwünschte Reaktionen mit Sauerstoff eingehen. Deshalb haben Algen einen trickreichen Weg gefunden, solche Reaktionen mit Sauerstoff zu verhindern und den Wirkungsgrad der Kohlenstoffbindung zu erhöhen. Sie konzentrieren den Großteil ihres Rubsicos in einem kugelförmigen Mikrokompartiment, dem sogenannten Pyrenoid, das sie mit einer hohen lokalen Kohlendioxidkonzentration fluten. Wenn wir verstehen, wie Algen das Pyrenoid bilden, sind wir vielleicht in der Lage, es auf technischem Wege in Pflanzen einzubauen und auf diese Weise Feldfrüchte zu erzeugen, die mehr Kohlendioxid aus der Atmosphäre fixieren. Gleichzeitig könnte damit auch die Nahrungsmittelproduktion gesteigert werden. Durch Kombination von Genetik, Zellbiologie, Computermodellen und Kryoelektronentomograpghie hat ein internationales Team von Wissenschaftlern der Universität Princeton, der Carnegie Institution for Science, der Universität Stanford und des Max-Planck-Instituts für Biochemie in Martinsried bei München das Rätsel des Pyrenoidaufbaus gelöst. Sie fanden heraus, dass sich das Pyrenoid wie ein Flüssigkeitstropfen verhält, der während der Zellteilung auseinanderfließt, damit sichergestellt ist, dass er an beide Tochterzellen weitervererbt wird.

Unser Planet erwärmt sich

Das Klima unseres Planeten ist dabei sich zu verändern. Jedes Jahr werden Hitzerekorde gebrochen, die extreme Wetterlagen, schmelzendes Polareis und steigende Meeresspiegel zur Folge haben. Verstärkt wird die globale Erwärmung durch Treibhausgase wie Kohlendioxid, die verhindern, dass Wärme aus der Atmosphäre entweichen kann. Pflanzen und Algen wirken als natürliche Luftfilter diesem Effekt entgegen: In einem als Photosynthese bezeichneten Prozess nutzen sie die Energie der Sonne, um der Atmosphäre Kohlendioxid zu entziehen und diesen als Biomasse zu fixieren. Dabei erzeugen sie Sauerstoff, den wir einatmen. Etwa die Hälfte der auf der Erde stattfindenden Photosynthese erfolgt durch einzellige Algen im Ozean. Viele dieser Algen binden Kohlendioxid effizienter als Landpflanzen, indem sie den Großteil ihres Rubiscos in einem Mikrokompartiment, dem sogenannten Pyrenoid, konzentrieren. Trotz der Bedeutung des Pyrenoids für die globale Umwelt war bis vor kurzem nicht bekannt, wie dieses Mikrokompartiment aufgebaut ist.

Jedes Rubisco im Pyrenoid sichtbar machen

Ein erster Durchbruch gelang dem Team von Martin Jonikas, Leiter der Arbeitsgruppen in Carnegie/Stanford und Princeton. Sie identifizierten ein Linkerprotein in der Grünalge Chlamydomonas, das Rubisco-Enzyme innerhalb des Pyrenoids aneinanderbindet. Ohne diesen „molekularen Klebstoff“ kommt es nicht zur Entstehung des Pyrenoids. Bisher war jedoch nicht bekannt, wie die Rubisco-Proteine in dem Pyrenoid organisiert sind. Lange dachten die Forscher, dass es sich dabei um einen Festkörperkristall höherer Ordnung handeln könnte.

Um dieser Frage nachzugehen, untersuchten Wissenschaftler um Benjamin Engel am Max-Planck-Institut für Biochemie die molekulare Organisation des Pyrenoids in Chlamydomonas-Zellen mittels Kryoelektronentomographie. Im Gegensatz zur klassischen Elektronenmikroskopie, werden bei dieser Technik durch rasches Einfrieren Artefakte vermieden und die Zelle in ihrem nativen Zustand gehalten. Mit Hilfe dieses hochauflösenden Bildgebungsverfahrens konnten Engel und seine Kollegen genau messen, an welchen Positionen in dem Pyrenoid sich die vielen Tausenden von Rubisco-Enzymen befinden. Sie stellten fest, dass das Pyrenoid keine kristalline Struktur aufweist: „Vergleicht man unsere Messungen mit der Organisation von Molekülen in Flüssigkeiten finden sich deutliche Ähnlichkeiten. Das deutet darauf hin, dass Pyrenoide in Wirklichkeit flüssigkeitsartige Strukturen sind“, erklärt Engel das Ergebnis.

Wie Öl und Wasser

Um zu belegen, dass sich das Pyrenoid wie eine Flüssigkeit verhält, führte Elizabeth Freeman Rosenzweig, Erstautorin der Studie, fluoreszenzspektroskopische Messungen der Bewegung von Rubisco innerhalb lebender Zellen durch. Mit Hilfe eines Hochleistungslasers löschte sie das Signal der an Rubisco gebundenen fluoreszierenden Markierung in einer Hälfte des Pyrenoids, während die Markierung in der anderen Hälfte erhalten blieb. Innerhalb von Minuten breitete sich die Fluoreszenz wieder im gesameten Pyrenoid aus. Die Enzyme konnten sich wie in einer Flüssigkeit hin und her bewegen. Bei dem Pyrenoid handelt es sich also um ein flüssiges Mikrokompartiment, das in einem zweiten großen Flüssigkeitskompartiment, dem Chloroplasten, schwimmt. Dies ist ein Beispiel für eine „Phasentrennung“, ein physikalisches Phänomen, das, wie kürzlich nachgewiesen wurde, eine Rolle bei der Kompartimentbildung vieler Zellproteine spielt. Freeman Rosenzweig erläutert dieses Prinzip anhand einer Analogie: „Zwar sind bei der Phasentrennung des Pyrenoids andere Kräfte am Werk, der Vorgang lässt sich aber anhand eines vertrauten Bildes gut veranschaulichen: Stellen Sie sich vor, sie bekommen Essig und Öl in einem italienischen Restaurant. Beides sind Flüssigkeiten, aber sie vermischen sich nicht. Der Essig bildet stattdessen Tröpfchen, die in dem Öl schwimmen. Genauso bildet unserer Ansicht nach das Pyrenoid ein Tröpfchen innerhalb der flüssigen Umgebung des Chloroplasten.“

Freeman Rosenzweig entdeckte zudem, dass sich zu einem speziellen Zeitpunkt das „Öl” des Chloroplasten-Stromas und der „Essig“ des Pyrenoids doch mischen. Teilen sich einzellige Algen in zwei Tochterzellen, durchläuft das Pyrenoid einen „Phasenübergang”, bei dem es sich teilweise in das ihn umgebende Stroma des Chloroplasten auflöst. Für gewöhnlich wird das verbleibende Pyrenoid zweigeteilt, wobei jede Tochterzelle eine Hälfte aufnimmt. Zuweilen schlägt diese Teilung jedoch fehl und eine der Tochterzellen geht leer aus. Die Forscher beobachteten, dass Zellen, auf die kein Pyrenoid übergeht, dieses dennoch spontan bzw. „de novo“ herstellen können. Sie vermuten, dass jede Tochterzelle einen Teil der gelösten Pyrenoidkomponenten aufnimmt und sich diese in ähnlicher Weise zu einem neuen Pyrenoid zusammenschließen können – wie Regentropfen aus Wasserdampf kondensieren. „Wir denken, dass die Auflösung des Pyrenoids vor und seine Kondensation nach der Zellteilung einen redundanten Mechanismus darstellen könnten, der gewährleistet, dass beide Tochterzellen Pyrenoide aufnehmen“, meint Jonikas. „Auf diese Weise verfügen beide Zellen über diese wichtige Organelle, die für die Kohlenstoffaufnahme entscheidend ist.“

Fakten, Hintergründe, Dossiers
  • Chlamydomonas
  • Chlamydomonas reinhardtii
  • Zellteilung
  • Pyrenoid
  • Kryo-Elektronentomografie
Mehr über MPI für Biochemie
  • News

    Erstmals Proteom des menschlichen Herzens entschlüsselt

    Ein gesundes Herz schlägt ungefähr zwei Milliarden Mal im Leben. Forscher des Max-Planck-Instituts für Biochemie und des Deutschen Herzzentrums München an der Technischen Universität München haben nun erfasst, welche und wie viele Proteine in welchen Zelltypen vorhanden sind. Sie haben den ... mehr

    Zellulärer Stromausfall

    Ein gemeinsames Merkmal neurodegenerativer Erkrankungen sind Proteinablagerungen in den Nervenzellen. Wie Wissenschaftler jetzt berichten, produzieren auch gesunde Zellen kontinuierlich verklumpungsanfällige Proteine. Grund dafür sind reaktive Sauerstoffspezies, die bei der zellulären Energ ... mehr

    Molekulare Kraftmesser

    Proteine werden häufig als molekulare Maschinen der Zellen beschrieben. Um ihre Funktionsweise zu verstehen, reicht es häufig nicht aus, sich die beteiligten Proteine unter dem Mikroskop anzuschauen. Dort, wo Maschinen arbeiten treten mechanische Kräfte auf, die wiederum Einfluss auf die je ... mehr

Mehr über Max-Planck-Gesellschaft - Generalverwaltung
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.