Meine Merkliste
my.bionity.com  
Login  

Das Gehirn vernetzt sich von allein

Neurowissenschaftler widerlegen Lehrsatz zur Hirnentwicklung

21.04.2017

© MPI f. experimentelle Medizin

Nervenzelle im Hippokampus der Maus. Verschiedene Typen dendritischer Dornen sind teilweise durch farbige 'Auren' hervorgehoben.

Nach der gängigen Lehrmeinung müssen Nervenzellen im Gehirn aktiv miteinander kommunizieren, um funktionsfähige Netzwerke zu etablieren. Mit einem eleganten genetischen Trick haben die Göttinger Neurowissenschaftler Albrecht Sigler und Cordelia Imig vom Max-Planck-Institut für experimentelle Medizin in Göttingen nun nachgewiesen, dass sich Nervenzellen in wichtigen Hirnregionen auch ganz ohne aktive Signalübertragung miteinander zu normal strukturierten Netzwerken verknüpfen können.

Das menschliche Gehirn verarbeitet Informationen in einem gigantischen Netzwerk von 100 Milliarden Nervenzellen, die über 100 Billionen Kontaktstellen – sogenannte Synapsen – miteinander verbunden sind. An diesen Synapsen führen elektrische Impulse einer sendenden Nervenzelle zur Freisetzung von chemischen Botenstoffen, die von nachgeschalteten Nervenzellen empfangen und wieder in elektrische Signale umgewandelt werden. Auf diesem Prinzip der chemischen Signalübertragung basiert die Kommunikation aller Nervenzellen, die in Form von Netzwerken für die Steuerung aller Körperfunktionen verantwortlich sind.

Der wichtigste Botenstoff im Gehirn, Glutamat, wird an so genannten „spine“-Synapsen übertragen, deren empfangender Teil aus kurzen Ausstülpungen von Nervenzellfortsätzen besteht - den „spines“ oder dendritischen Dornen. Diese Dornen sind winzige zelluläre Schalteinheiten, die sowohl für die normale Signalübertragung als auch für komplexe Hirnfunktionen wie etwa Lernprozesse von fundamentaler Bedeutung sind. Und ein seit Jahrzehnten geltendes Dogma der Hirnforschung besagt, dass die Ausbildung von Dornen-Synapsen von einer aktiven Glutamat-Freisetzung durch sendende Nervenzellen abhängig ist.

Synapsen ohne Transmitter-Ausschüttung

Albrecht Sigler und Codelia Imig, die bei Jeong Seop Rhee und Nils Brose am Göttinger Max-Planck-Institut für experimentelle Medizin forschen, haben dieses Dogma nun zusammen mit Kollegen des Max Planck Florida Institute for Neuroscience in den USA widerlegt. Mithilfe von Tierversuchen an genetisch veränderten Mäusen, in denen die synaptische Botenstoff-Ausschüttung komplett lahmgelegt ist, konnten sie nachweisen, dass eine normale Entwicklung von Dornen-Synapsen auch ganz ohne Glutamat-Freisetzung erfolgen kann.

„Als wir die Daten zum ersten Mal bei einer Konferenz vorgestellt haben, wollten uns die Kollegen zunächst nicht glauben“, berichtet Imig. Aber die Datenlage ist eindeutig. Albrecht Sigler ergänzt: „Nervenzellen im Hippokampus, einer für Lernprozesse essentiellen Hirnregion, bilden Dornen-Synapsen in normaler Zahl und mit einer normalen Verteilung entlang ihrer Fortsätze, auch wenn es keine Botenstoffausschüttung gibt.“

Es gibt offenbar ein zelluläres Programm im Hippokampus, das die Vernetzung von Nervenzellen in dieser Hirnregion steuert und bei dem synaptische Botenstoff-Signale keine Rolle spielen. Erst das so entstehende Netzwerk bildet dann die Basis für durch Hirnaktivität ausgelöste Veränderungen der Synapsen-Verschaltung. „Aber während der initialen Netzwerk-Entwicklung scheint synaptische Aktivität keine Rolle zu spielen", erklärt Siegler. „Die aus vielen Studien gefolgerte Aktivitätsabhängigkeit der Dornen-Entwicklung wurde schlichtweg überschätzt.“

Originalveröffentlichung:

Sigler, A., Oh, W.C., Imig, C., Altas, B., Kawabe, H., Cooper, B.H., Kwon, H.-B., Rhee, J.-S. und Brose, N.; "Formation and maintenance of functional spines in the absence of presynaptic glutamate release"; Neuron; 19 April, 2017

Fakten, Hintergründe, Dossiers
Mehr über MPI für experimentelle Medizin
  • News

    Fehlerhaftes Synapsenprotein kann zu psychischen Störungen führen

    'Timing ist alles' bei der Signalübertragung zwischen Nervenzellen im Gehirn. Die allermeisten komplexen Leistungen, zu denen Menschen imstande sind, wären schwer beeinträchtigt, wenn ihre Nervenzellen nicht in der Lage wären, auf die tausendstel Sekunde genau miteinander zu kommunizieren. ... mehr

    Wenn das Immunsystem Hirnzellen angreift

    Wenn das eigene Immunsystem Strukturen von Hirnnervenzellen angreift, können die Folgen verheerend sein. Besonders dann, wenn es sich gegen Bestandteile von Gehirnnervenzellen richtet. Bochumer und Göttinger Forscher haben nun herausgefunden, dass solche Autoimmun-Reaktionen gegen einen bes ... mehr

    Synapsen sind immer in den Startlöchern

    Während Nervenzellen Informationen in ihrem Inneren schnell als elektrische Signale weiterleiten, kommunizieren sie untereinander an speziellen Kontaktstellen, den Synapsen. Dort werden chemische Botenstoffe, die Neurotransmitter, in sogenannten Vesikeln gespeichert. Wird eine Synapse aktiv ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für experimentelle Medizin

    Das Institut wurde 1947 als Medizinische Forschungsanstalt der Kaiser-Wilhelm-Gesellschaft gegründet und 1948 in die Max-Planck-Gesellschaft übernommen. Seit 1965 trägt es den Namen "Max-Planck-Institut für Experimentelle Medizin". Die Arbeiten des Instituts befassen sich mit medizinischer ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Evolution im Labor

    Lebewesen müssen sich fortwährend an ihre Umgebung anpassen, um darin zu bestehen. Verantwortlich für solche Anpassungen sind Änderungen im Erbgut. Paul Rainey vom Max-Planck-Institut für Evolutionsbiologie in Plön hat zusammen mit Kollegen aus Neuseeland in Laborexperimenten die Entstehung ... mehr

    Unkraut im Gehirn

    Alzheimer, Parkinson und Huntington – neurodegenerative Krankheiten haben eine Gemeinsamkeit: In den Nervenzellen der Patienten sammeln sich Proteinablagerungen an. Sind diese Aggregate erst einmal vorhanden, wuchern sie wie Unkraut. Ob und wie die Ablagerungen Nervenzellen schädigen und zu ... mehr

    Nucleolus erlaubt Vorhersage der Lebenserwartung

    Kann man einer Zelle ansehen wie alt sie ist? Und ist es möglich die Lebenszeit eines Tieres vorherzusehen? Wissenschaftler vom Max-Planck-Institut für Biologie des Alterns in Köln haben eine Verbindung zwischen der Größe des Nukleolus und der Lebenserwartung entdeckt. Diese kleine Struktur ... mehr

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. mehr

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? mehr

    Chaperone - Faltungshelfer in der Zelle

    In der Zelle geht es manchmal zu wie beim Brezelbacken: Damit ein Protein richtig funktionieren kann muss seine Aminosäurekette in die richtige Form gebracht werden. Franz-Ulrich Hartl erforscht, wie die sogenannten Chaperone als Faltungshelfer der Proteine wirken. mehr

  • Forschungsinstitute

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    Max-Planck-Institute betreiben Grundlagenforschung in den Natur-, Bio-, Geistes- und Sozialwissenschaften im Dienste der Allgemeinheit. Die Max-Planck-Gesellschaft greift insbesondere neue, besonders innovative Forschungsrichtungen auf, die an den Universitäten in Deutschland noch keinen od ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.