Making an eye for you
The underlying mechanisms of 3D tissue formation
If you want to build an organ, such as for transplant, you need to think in 3D.

Eye, symbolic picture
Skitterphoto; pixabay.com; CC0
Using stem cells, scientists for some time have been able to grow parts of organs in the lab, but that is a far cry from constructing an actual, fully-formed, functioning, three-dimensional organ.
For students of regenerative medicine and developmental biology, this is why understanding how cells bend and move to form organs and bodily tissue is a hot topic.
And now a team at Kyoto University's Institute for Frontier Life and Medical Sciences have gained new understanding into how cells undergoing mechanical strain create the spherical structure of the eye.
The team has found that individual cells together form a primordial, cup-like structure -- an 'optic cup' -- by sensing mechanical forces resulting from the deformation of the entire tissue.
"In the past, we succeeded in making the optic cup by culturing embryonic stem -- ES -- cells. To form a sphere, the tissue needed to first protrude from primordial brain tissue and then invaginate inside," explains first author Satoru Okuda.
"But how individual cells sensed and modulated themselves to form that shape had been unclear."
The team developed a computational simulation that calculates the formation of three-dimensional tissue structures. Using this knowledge and past experimental data, they constructed a virtual precursor-eye and were able to predict the physics driving the sphere-forming cells.
Their findings show that during optic cup formation, a cell differentiation pattern -- pushing cells into the cup shape -- is generated, causing a portion of the cells to spontaneously fold into the tissue. This force caused by 'self-bending' propagates to the boundary region, where other cells sense the strain.
"The combination of the tissue deformation and the strain on the boundary of the optic cup generates a hinge that further pushes the bending cells," continues Okuda, "leading to the cup-like structure."
"The next step was to verify this prediction using actual ES cells."
Utilizing mouse ES cells in culture, the team applied mechanical strain on specific points and were pleased to detect the calcium responses, mechanical feedback, and cell shape changes they had predicted in the simulations.
These findings reveal a new role for mechanical forces in shaping organs, which is crucial in forming complex tissues, even in a petri dish. The team will continue to investigate these forces, seeking to continue advancing the field of regenerative medicine.
"While our research shows the possibility of controlling the shapes of organs made in vitro -- using appropriate mechanical stimulation based on prediction -- current techniques are still limited," concludes lead scientist Mototsugu Eiraku.
"We hope to improve the predictive accuracy of our simulations and recreate more complicated tissues and organs in the future."
Original publication
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents
Opioid-induced_hyperalgesia
Maltotriose

Using viruses to fight resistant bacteria
Barr_Pharmaceuticals
The_Vicar_of_Bray
Hiroshi_Nakajima
Peptic_ulcer
Category:DNA-binding_proteins
