07-Aug-2020 - Universität Basel

Acetate regulates immune cells for a precisely orchestrated immune defense

Similar to a pressure valve, which prevents the pressure from rising to critical levels, the regulation of immune cells by acetate prevents the immune reaction from overshooting

The concentration of acetate increases particularly sharply at the site of an infection in the body. As reported in the journal Cell Metabolism by a team of researchers from the University of Basel and colleagues, acetate supports the function of certain immune cells and thus helps to eliminate pathogens safely and efficiently.

An armada of immune cells protects the body in the event of infections and works to eliminate pathogens. At the same time, the soldiers that make up this army are only as good as the conditions in which they face their enemies, and the mix of molecules and metabolites at the site of infection plays a decisive role in how the immune cells do their job.

An important factor is the metabolite acetate, as reported by the team of researchers led by Professor Christoph Hess and Dr. Maria Balmer from the Universities of Basel, Cambridge and Bern. The researchers investigated the effect of acetate on what are known as memory T cells, which ensure efficient protection against known pathogens.

Protection against an excessive immune response

In a first stage of the response, the rising concentration of acetate fuels the “killer function” of the T cells. However, if the concentration rises above a certain threshold, a protective mechanism slows down the immune function of these cells and promotes the production of anti-inflammatory mediators. This prevents an excessive immune response, along with corresponding collateral damage to the tissue.

“This is the first study demonstrating this dual effect – of one and the same metabolite – on our immune system,” says Balmer, lead author of the study. “Acetate essentially has two faces: stimulating immune function on the one hand, and slowing it down in a timely manner on the other.”

“If we understand how metabolites influence our immune system at various stages of the immune response, this may point at new approaches that allow, for example, better treatment of chronic inflammatory or autoimmune diseases,” says Hess.

Facts, background information, dossiers
More about Universität Basel
  • News

    Muscle aging: Stronger for longer

    With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging. Researchers from the University of Basel’s Biozentrum have demonstrated that a well-known drug can delay the progression of age-related muscle weakness. Al ... more

    A lack of oxygen in tumors promotes metastasis

    Metastases are formed by cancer cells that break away from the primary tumor. A research group at the University of Basel has now identified lack of oxygen as the trigger for this process. The results reveal an important relationship between the oxygen supply to tumors and the formation of ... more

    How bacteria adhere to fiber in the gut

    Researchers have revealed a new molecular mechanism by which bacteria adhere to cellulose fibers in the human gut. Thanks to two different binding modes, they can withstand the shear forces in the body. Scientists of the University of Basel and ETH Zurich published their results in the jour ... more

  • Videos

    Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning

    Before an operation, surgeons have to obtain the most precise image possible of the anatomical structures of the part of the body undergoing surgery. University of Basel researchers have now developed a technology that uses computed tomography data to generate a three-dimensional image in r ... more

    Nuclear Pores Captured on Film

    Zooming into a nuclear pore complex using a high-speed atomic force microscope reveals the selectivity barrier that filters the traffic of molecules passing between the cytoplasm and nucleus in eukaryotic cells. This is comprised of intrinsically disordered proteins known as FG Nucleoporins ... more