25-Nov-2019 - Universität Basel

Magnesium deprivation stops pathogen growth

When pathogens invade the cells, our body combats them using various methods. Researchers at the University of Basel’s Biozentrum have now been able to show how a cellular pump keeps such invading pathogens in check. As the researchers report in “Science”, this pump causes a magnesium shortage, which in turn restricts bacterial growth.

When pathogens infect an organism, the defense system immediately starts to fight the bacteria. To escape the patrolling immune cells, some bacteria invade and replicate inside host cells. However, the host has developed various strategies to keep the intracellular bacteria under control.

Olivier Cunrath and Prof. Dirk Bumann at the Biozentrum, University of Basel, have now discovered that magnesium is crucial for bacterial growth inside host cells. Magnesium starvation is a stress factor for the bacteria, which stops their growth and replication. The host cells limit magnesium supply to these intracellular pathogens using a transport protein called NRAMP1.

Host protein suppresses pathogens

In their study, the researchers investigated Salmonella, a bacterial pathogen that causes gastroenteritis and typhoid fever. The bacteria settle in small inclusions in the macrophages of the immune system. Whether and how quickly Salmonella replicate inside these vesicles and spread depends on the proper functioning of the NRAMP1 transporter.

“It has been known for decades that NRAMP1 makes the host more resistant, but how and why has remained unclear,” says Bumann. “We were greatly surprised to find that this transport protein pumps magnesium ions out of the vesicles and thus restricts Salmonella growth. This is a new and completely unexpected mechanism.”

Magnesium as an Achilles heel for bacteria

As magnesium is a central component of many metabolic enzymes, a shortage reduces bacterial metabolism and growth. “Magnesium seems to be the Achilles heel for intracellular pathogens. The less magnesium is available, the harder they try to get it. The bacteria go on alert and activate all magnesium uptake systems. Nevertheless, they do not manage to get enough,” says first author Cunrath. “However, if the pump in the host cells is defective, magnesium is available in sufficient quantities to enable rapid Salmonella growth.”

Transporter affects host resistance

The function of NRAMP1 determines host susceptibility to infections. Animals and humans with reduced NRAMP1 are more susceptible to various intracellular pathogens. If this transporter is completely absent, even a very small number of pathogens can cause a fatal infection.

Infections are always a race between the host and the pathogen. New drugs that would make it even harder for the bacteria to obtain magnesium, could slow down the pathogens even more and thus provide the host a decisive advantage in defeating the infection.

Facts, background information, dossiers
More about Universität Basel
  • News

    Acetate regulates immune cells for a precisely orchestrated immune defense

    The concentration of acetate increases particularly sharply at the site of an infection in the body. As reported in the journal Cell Metabolism by a team of researchers from the University of Basel and colleagues, acetate supports the function of certain immune cells and thus helps to elimi ... more

    New approach for targeted cancer immunotherapy

    Cancer immunotherapies make use of the ability of the immune system to attack cancer cells: they unleash the killer function of T cells, which then attack and eradicate the cancer cells. However, tumors have their own mechanisms to paralyze these attacks. Despite major advances in immunothe ... more

    Neandertal genes in the petri dish

    Protocols that allow the transformation of human induced pluripotent stem cell (iPSC) lines into organoids have changed the way scientists can study developmental processes and enable them to decipher the interplay between genes and tissue formation, particularly for organs where primary ti ... more

  • Videos

    Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning

    Before an operation, surgeons have to obtain the most precise image possible of the anatomical structures of the part of the body undergoing surgery. University of Basel researchers have now developed a technology that uses computed tomography data to generate a three-dimensional image in r ... more

    Nuclear Pores Captured on Film

    Zooming into a nuclear pore complex using a high-speed atomic force microscope reveals the selectivity barrier that filters the traffic of molecules passing between the cytoplasm and nucleus in eukaryotic cells. This is comprised of intrinsically disordered proteins known as FG Nucleoporins ... more