My watch list  


30 copperzincgallium


Periodic table - Extended periodic table
Name, symbol, number zinc, Zn, 30
Chemical seriestransition metals
Group, period, block 12, 4, d
Appearancebluish pale gray
Standard atomic weight 65.409(4) g·mol−1
Electron configuration [Ar] 3d10 4s2
Electrons per shell 2, 8, 18, 2
Physical properties
Density (near r.t.)7.14 g·cm−3
Liquid density at m.p.6.57 g·cm−3
Melting point692.68 K
(419.53 °C, 787.15 °F)
Boiling point1180 K
(907 °C, 1665 °F)
Heat of fusion7.32 kJ·mol−1
Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 610 670 750 852 990 (1185)
Atomic properties
Crystal structurehexagonal
Oxidation states3 [1], 2
(amphoteric oxide)
Electronegativity1.65 (Pauling scale)
Ionization energies
1st: 906.4 kJ·mol−1
2nd: 1733.3 kJ·mol−1
3rd: 3833 kJ·mol−1
Atomic radius135 pm
Atomic radius (calc.)142 pm
Covalent radius131 pm
Van der Waals radius139 pm
Magnetic orderingdiamagnetic
Electrical resistivity(20 °C) 59.0 nΩ·m
Thermal conductivity(300 K) 116 W·m−1·K−1
Thermal expansion(25 °C) 30.2 µm·m−1·K−1
Speed of sound (thin rod)(r.t.) (rolled) 3850 m·s−1
Young's modulus108 GPa
Shear modulus43 GPa
Bulk modulus70 GPa
Poisson ratio0.25
Mohs hardness2.5
Brinell hardness412 MPa
CAS registry number7440-66-6
Selected isotopes
Main article: Isotopes of zinc
iso NA half-life DM DE (MeV) DP
64Zn 48.6% Zn is stable with 34 neutrons
65Zn syn 244.26 d ε - 65Cu
γ 1.1155 -
66Zn 27.9% Zn is stable with 36 neutrons
67Zn 4.1% Zn is stable with 37 neutrons
68Zn 18.8% Zn is stable with 38 neutrons
69Zn syn 56.4 min β 0.906 69Ga
70Zn 0.6% Zn is stable with 40 neutrons
This box: view  talk  edit

Zinc (pronounced /ˈzɪŋk/, from German: Zink) is a metallic chemical element with the symbol Zn and atomic number 30. In some historical and sculptural contexts, it is (or was) known as spelter.


Notable characteristics

Zinc is a moderately reactive, blue gray metal that tarnishes in moist air and burns in air with a bright bluish-green flame, giving off plumes of zinc oxide. It reacts with acids, alkalis and other non-metals. If not completely pure, zinc reacts with dilute acids to release hydrogen. The one common oxidation state of zinc is +2. From 100 °C to 210 °C (212 °F to 410 °F) zinc metal is malleable and can easily be beaten into various shapes. Above 210 °C (410 °F), the metal becomes brittle and will be pulverized by beating. Zinc is nonmagnetic.



In ancient India the production of zinc metal was very common. Many mine sites of Zawar Mines, near Udaipur, Rajasthan;-Zawarmaala were active even during 1300–1000 BC. There are references of medicinal uses of zinc in the Charaka Samhita (300 BC). The Rasaratna Samuccaya (800 AD) explains the existence of two types of ores for zinc metal, one of which is ideal for metal extraction while the other is used for medicinal purpose.[citation needed] Zinc alloys have been used for centuries, as brass goods dating to 1400–1000 BC have been found in Israel and zinc objects with 87% zinc have been found in prehistoric Transylvania. Because of the low boiling point and high chemical reactivity of this metal (isolated zinc would tend to go up the chimney rather than be captured), the true nature of this metal was not understood in ancient times.

The manufacture of brass was known to the Ebi by about 30 BC, using a technique where calamine and copper were heated together in a crucible. The zinc oxides in calamine were reduced, and the free zinc metal was trapped by the copper, forming an alloy. The resulting calamine brass was either cast or hammered into shape.

Smelting and extraction of impure forms of zinc was accomplished as early as 1000 AD in India and China. In the West, impure zinc as a remnant in melting ovens was known since Antiquity, but usually discarded as worthless. Strabo mentions it as pseudo-arguros — "mock silver". The Berne zinc tablet is a votive plaque dating to Roman Gaul, probably made from such zinc remnants.

Metallic zinc in the West

The metallurgist Andreas Libavius received in 1597 a quantity of zinc metal in its pure form, which was unknown in the West before then. Libavius identified it as Indian/Malabar lead. Paracelsus (1516) was credited for the name zinc. It was regularly imported to Europe from the orient in the 17th century, but was at times very expensive.

The isolation of metallic zinc in the West may have been achieved independently by several people:

  • Dr John Lane is said to have carried out experiments, probably at Landore, prior to his bankruptcy in 1726. Postlewayt's Universal Dictionary, a contemporary source giving technological information in Europe, did not mention zinc before 1751.
  • In 1738, William Champion patented in Great Britain a process to extract zinc from calamine in a smelter, using a technology somewhat similar to that used at Zawar zinc mines in Rajasthan. However, there is no evidence that he visited the orient.[1]
  • The discovery of pure metallic zinc is also often credited to the German Andreas Marggraf, in 1746, though the whole story is disputed.[citation needed]

Before the discovery of the zinc sulfide flotation technique, calamine was the mineral source of zinc metal.  

Biological role

Zinc is an essential element, necessary for sustaining all life. It is estimated that 3,000 of the hundreds of thousands of proteins in the human body contain zinc prosthetic groups, one type of which is the so-called zinc finger. In addition, there are over a dozen types of cells in the human body that secrete zinc ions, and the roles of these secreted zinc signals in medicine and health are now being actively studied. Zinc ions are now considered neurotransmitters. Cells in the salivary gland, prostate, immune system and intestine are other types that secrete zinc.[citation needed]

Zinc is an activator of certain enzymes, such as carbonic anhydrase. Carbonic anhydrase is important in the transport of carbon dioxide in vertebrate blood. It is also required in plants for leaf formation, the synthesis of indole acetic acid (auxin) and anaerobic respiration (alcoholic fermentation).[citation needed]

Food sources

Zinc is found in oysters, and to a far lesser degree in most animal proteins, beans, nuts, almonds, whole grains, pumpkin seeds and sunflower seeds.[2] A turkey's neck and beef's chuck or shank also contain good amounts of zinc. Phytates, which are found in whole grain breads, cereals, legumes and other products, have been known to decrease zinc absorption. Clinical studies have found that zinc, combined with antioxidants, may delay progression of age-related macular degeneration.[3] Significant dietary intake of zinc has also recently been shown to impede the onset of flu.[citation needed] Soil conservation analyzes the vegetative uptake of naturally occurring zinc in many soil types.

The (US) recommended dietary allowance of zinc from puberty on is 11mg for males and 8mg for females, with higher amounts recommended during pregnancy and lactation.

Zinc deficiency

Zinc deficiency results from inadequate intake of zinc, or inadequate absorption of zinc into the body. Signs of zinc deficiency include hair loss, skin lesions, diarrhea, and wasting of body tissues. Eyesight, taste, smell and memory are also connected with zinc. A deficiency in zinc can cause malfunctions of these organs and functions. Congenital abnormalities causing zinc deficiency may lead to a disease called Acrodermatitis enteropathica.

Obtaining a sufficient zinc intake during pregnancy and in young children is a very real problem, especially among those who cannot afford a good and varied diet. Brain development is stunted by zinc insufficiency in utero and in youth.

It is rarely recognised that lack of zinc can contribute to acne. Leukonychia, purple spots on the fingernails, are often seen as an indication of zinc deficiency.

Zinc deficiency as a cause of anorexia nervosa

Main article: Anorexia nervosa

Zinc deficiency causes a decrease in appetite -- which could degenerate in anorexia nervosa (AN). Appetite disorders, in turn, cause malnutrition and, notably, inadequate zinc intake. The use of zinc in the treatment of anorexia nervosa has been advocated since 1979 by Bakan. At least 15 trials showed that zinc improved weight gain in anorexia. A 1994 randomized, double-blind, placebo-controlled trial showed that zinc (14 mg per day) doubled the rate of body mass increase in the treatment of anorexia nervosa (AN). Deficiency of other nutrients such as tyrosine and tryptophan (precursors of the monoamine neurotransmitters norepinephrine and serotonin, respectively), as well as vitamin B1 (thiamine) could contribute to this phenomenon of malnutrition-induced malnutrition.[4]

Zinc toxicity

Even though zinc is an essential requirement for a healthy body, too much zinc can be harmful. Excessive absorption of zinc can also suppress copper and iron absorption. The free zinc ion in solution is highly toxic to plants, invertebrates, and even vertebrate fish. The Free Ion Activity Model (FIAM) is well-established in the literature, and shows that just micromolar amounts of the free ion kills some organisms. A recent example showed 6 micromolar killing 93% of all daphnia in water.[5] Swallowing a post 1982 American one cent piece (97.5% zinc) can also cause damage to the stomach lining due to the high solubility of the zinc ion in the acidic stomach.[6] Zinc toxicity, mostly in the form of the ingestion of US pennies minted after 1982, is commonly fatal in dogs where it causes a severe hemolytic anemia.[7] In pet parrots zinc is highly toxic and poisoning can often be fatal[8].

There is evidence of induced copper deficiency at low intakes of 100–300 mg Zn/d. The USDA RDA is 15 mg Zn/d. Even lower levels, closer to the RDA, may interfere with the utilization of copper and iron or to adversely affect cholesterol.[9].

Immune system

See also: Zinc gluconate

Zinc salts are effective against pathogens in direct application. Gastroenteritis is strongly attenuated by ingestion of zinc, and this effect could be due to direct antimicrobial action of the zinc ions in the GI tract, or to absorption of the zinc and re-release from immune cells (all granulocytes secrete zinc), or both.[10][11]

In clinical trials, both zinc gluconate and zinc gluconate glycine (the formulation used in lozenges) have been shown to shorten the duration of symptoms of the common cold.[12] The amount of glycine can vary from two to twenty moles per mole of zinc gluconate.


See also:

Zinc is the 23rd most abundant element in the Earth's crust. The most heavily mined ores (sphalerite) tend to contain roughly 10% iron as well as 40–50% zinc. Minerals from which zinc is extracted include sphalerite (zinc sulfide), smithsonite (zinc carbonate), hemimorphite (zinc silicate), and franklinite (a zinc spinel).

The earth has been estimated to have 46 years supply of zinc.[13]

Zinc mining and processing

  There are zinc mines throughout the world, with the largest producers being China, Australia and Peru. In 2005, China produced almost one-fourth of the global zinc output, reports the British Geological Survey. Mines and refineries in Europe include Umicore in Belgium, Tara, Galmoy and Lisheen in Ireland and Zinkgruvan in Sweden. Zinc metal is produced using extractive metallurgy. Zinc sulfide (sphalerite) minerals are concentrated using the froth flotation method and then usually roasted using pyrometallurgy to oxidise the zinc sulfide to zinc oxide. The zinc oxide is leached to zinc sulfate (ZnSO4) in several stages of increasingly stronger sulfuric acid (H2SO4). Iron is usually rejected as jarosite or goethite, removing other impurities at the same time. The final purification uses zinc dust to remove copper, cadmium and cobalt in two to three different stages. The metal is then extracted from the purified zinc sulfate solution by electrowinning as cathodic deposits over aluminium sheets. Zinc cathodes can be directly cast or alloyed with aluminium.

Electrolyte zinc sulfate solutions must be very pure for electrowinning to be at all efficient. Impurities can change the decomposition voltage enough to where the electrolysis cell produces largely hydrogen gas rather than zinc metal.[14]

There are two common processes for electrowinning the metal: the low current density process, and the Tainton high current density process. The former uses a 10% sulfuric acid solution as the electolyte, with current density of 270–325 amperes per square meter. The latter uses 22–28% sulfuric acid solution as the electrolyte with a current density of about 1,000 amperes per square meter. The latter gives better purity and has higher production capacity per volume of electrolyte, but has the disadvantage of running hotter and being more corrosive to the vessel in which it is done. In either of the electrolytic processes, each metric ton of zinc production expends about 3900 kW·h (14 MJ) of electric power.[14]

There are also several pyrometallurgical processes that reduce zinc oxide using carbon, then distill the metallic zinc from the resulting mix in an atmosphere of carbon monoxide. These include the Belgian-type horizontal-retort process, the New Jersey Zinc continuous vertical-retort process, and the St. Joseph Lead Company's electrothermal process. The Belgian process requires redistillation to remove impurities of lead, cadmium, iron, copper, and arsenic. The New Jersey process employs a fractionating column, which is absent in the Belgian process, that separates the individual impurities, where they can be sold as byproducts. The St. Joseph Lead Company process heats the zinc oxide/coke mixture by passing an electric current through it rather than by coal or gas fire.[14]

Another pyrometallurgical process is flash smelting. Then zinc oxide is obtained, usually producing zinc of lesser quality than the hydrometallurgical process. Zinc oxide treatment has much fewer applications, but high grade deposits have been successful in producing zinc from zinc oxides and zinc carbonates using hydrometallurgy.


The most widely used alloy of zinc is brass, in which copper is alloyed with anywhere from 9% to 45% zinc, depending upon the type of brass, along with much smaller amounts of lead and tin. Alloys of 85–88% zinc, 4–10% copper, and 2–8% aluminum find limited use in certain types of machine bearings. Alloys of primarily zinc with small amounts of copper, aluminum, and magnesium are useful in die casting. An example of this is zinc aluminum. Similar alloys with the addition of a small amount of lead can be cold-rolled into sheets. An alloy of 96% zinc and 4% aluminum is used to make stamping dies for low production run applications where ferrous metal dies would be too expensive.[14]


See also:

Zinc oxide is perhaps the best known and most widely used zinc compound, as it makes a good base for white pigments in paint. It also finds industrial use in the rubber industry, and is sold as opaque sunscreen. A variety of other zinc compounds find use industrially, such as zinc chloride (in deodorants), zinc pyrithione (anti-dandruff shampoos), zinc sulfide (in luminescent paints), and zinc methyl or zinc diethyl in the organic laboratory. Roughly one quarter of all zinc output is consumed in the form of zinc compounds.


Main article: isotopes of zinc

Naturally occurring zinc is composed of the 5 stable isotopes 64Zn, 66Zn, 67Zn, 68Zn, and 70Zn with 64Zn being the most abundant (48.6% natural abundance). Twenty-one radioisotopes have been characterised with the most abundant and stable being 65Zn with a half-life of 244.26 days, and 72Zn with a half-life of 46.5 hours. All of the remaining radioactive isotopes have half-lives that are less than 14 hours and the majority of these have half lives that are less than 1 second. This element also has 4 meta states.

Zinc has been proposed as a "salting" material for nuclear weapons (cobalt is another, better-known salting material). A jacket of isotopically enriched 64Zn, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope Zn-65 with a half-life of 244 days and produce approximately 2.27 MeV of gamma radiation, significantly increasing the radioactivity of the weapon's fallout for several days. Such a weapon is not known to have ever been built, tested, or used.


Metallic zinc is not considered to be toxic, but free zinc ions in solution (like copper or iron ions) are highly toxic. There is also a condition called zinc shakes or zinc chills (see metal fume fever) that can be induced by the inhalation of freshly formed zinc oxide formed during the welding of galvanized materials. Excessive intake of zinc can promote deficiency in other dietary minerals.


  • Los Alamos National Laboratory - Zinc
  • – Zinc
  1. ^ Rhys Jenkins, 'The Zinc Industry in England: the early years up to 1850' Transactions of the Newcomen Society 25 (1945-7), 41-52.
  2. ^ Zinc content of selected foods per common measure (pdf). USDA National Nutrient Database for Standard Reference, Release 20. USDA. Retrieved on 2007-12-06.
  3. ^ Age-Related Eye Disease Study Research Group. Retrieved on 2007-11-13.
  4. ^ Neurobiology of Zinc-Influenced Eating Behavior. Retrieved on 2007-07-19.
  5. ^ Muyssen et al., (Aquat Toxicol. 2006)
  6. ^ Bothwell and Mair, PEDIATRICS 2003
  7. ^ Stowe CM, Nelson R, Werdin R, et al: Zinc phosphide poisoning in dogs. JAVMA 173:270, 1978
  8. ^ See, for example, this list of common parrot illnesses and their causes.
  9. ^ Zinc toxicity by GJ Fosmire, American Journal of Clinical Nutrition.
  10. ^ Aydemir, T, B.; Blanchard, R.K.; Cousins, R.J (2006). "Zinc Supplementation of Young Men Alters Metallothionein, Zinc Transporter, and Cytokine Gene Expression in Leucocyte Populations". PNS 103 (3): 1699-1704.
  11. ^ Valko, M; Morris, H.; Cronin, MTD (2005). "Metals, Toxicity and Oxidative stress". Current Medicinal Chemistry (12): 1161-1208.
  12. ^ Godfrey JC, Godfrey NJ, Novick SG. (1996). "Zinc for treating the common cold: Review of all clinical trials since 1984.". PMID 8942045.
  13. ^ New Scientist, 26 May 2007.
  14. ^ a b c d Samans, Carl H.: Engineering Metals and their Alloys MacMillan 1949
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Zinc". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE