18-Dec-2013 - Max-Planck-Institut für Pflanzenzüchtungsforschung

Immune system's errand boy

Signalling pathway links local and systemic plant immunity

When plants discover a pathogen, they prepare for system-wide attack so they are ready to fight on all levels. Working with colleagues, Annegret Ross and Yusuke Saijo of the Max Planck Institute for Plant Breeding Research in Cologne have discovered that this systemic defence can be triggered by a signalling pathway that reacts to short protein fragments. These are thought to originate when a plant cell is damaged by a pathogen. The signalling pathway introduces a molecular mediator into the plant's vascular system, putting all areas on alert.

Plants first detect intruders by their unfamiliarity. Receptors on the outside of plant cells act like bloodhounds, sniffing out unknown molecules. If they detect something that suggests a potential attack, the cells immediately activate local defences and prepare for attack on the whole plant by means of systemic resistance. The crisis manager and components of this mobilisation have been identified, and it is known that plant hormones such as ethylene, salicylic acid and jasmonic acid play a role in the systemic defence, while many molecular details still remain unknown. Annegret Ross and her colleagues in Paul Schulze-Lefert's department have now identified one more player in the organization of systemic immunity.

This player sits on the outside of the cell and is similar in structure to the receptors that sniff out unknown molecules. Instead of pathogens, however, this "Pep receptor" detects small endogenous protein fragments which are probably knocked off a larger precursor at the time of attack. Ross and her colleagues do not yet know how the fragments get between the cell membrane and cell wall, but it may be that they drift out through a leak in the cell membrane. Once out, they bind to the Pep receptor. The scientists wanted to start by finding out what happens in the cell nucleus when the Pep receptor detects one of these fragments, because in order to organize systemic immunity, an infected cell must alter its genetic programming. It cannot simply keep going as before at a genetic level, but must implement the program for systemic immunity.

The scientists working with Ross and Saijo have shown that once a protein fragment binds to the Pep receptor, hundreds of genes are transcribed differently. Many of these genes with changed transcription behaviour also have roles related to plant hormones, showing that their signalling pathways are deeply involved in organizing systemic immunity. The Pep receptor signalling pathway also works when the ethylene, salicylic acid and jasmonic acid pathways are switched off by targeted manipulation, so it is clear that the Pep receptor pathway can work in highly variable ways.

In order to gain a better understanding of its role, Ross and her colleagues cultivated Arabidopsis plants without Pep receptors. "First, we infected the leaves near the ground. The plant cells were able to defend themselves against this infection without any problems, so the local immune defence was not affected", Ross explains. "But when we then infected the higher leaves, the plant was unable to organize any systemic defence, meaning that without the Pep receptor, it had not developed systemic immunity. Without Pep receptors, it was just as vulnerable to the second infection as it was to the first." Ross and her colleagues conclude that the Pep receptor is involved in developing systemic immunity, and that it plays an essential role in this process.

What exactly do the Pep receptor and its signalling pathway do? The scientists have shown that the signalling pathway only originates in the infected cell, and not in distant leaves. This would indicate that it uses a molecular messenger to inform other levels. The messenger is probably released into the plant's vascular system, that is, the vessels used by the plant to transport water and the products of photosynthesis; but what it looks like and what molecular properties it has are questions Ross and her colleagues cannot answer yet. It is apparently possible to mobilise the messenger by treating the leaves just with endogenous protein fragments. In this case, there is no need for a pathogen; the protein fragments are sufficient to activate systemic immunity.

  • Annegret Ross et al.; The Arabidopsis PEPR pathway couples local and systemic plant immunity; EMBO Journal
Facts, background information, dossiers
  • plant immune system
More about MPI für Pflanzenzüchtungsforschung
More about Max-Planck-Gesellschaft
  • News

    Biological machine produces its own building blocks

    The field of synthetic biology does not only observe and describe processes of life but also mimics them. A key characteristic of life is the ability to ability for replication, which means the maintenance of a chemical system. Scientists at the Max Planck Institute of Biochemistry in Marti ... more

    In the right place at the right time

    Proteins are molecular work horses in the cell that perform specific tasks, but it is essential that the timing of protein activities is exquisitely controlled. When proteins have fulfilled their tasks, degradation of these proteins will end processes that are unneeded or detrimental. To co ... more

    Cellular waste system disposes of coronavirus

    Research into basic cellular processes continually leads to unexpected discoveries. A study by researchers from the Max Planck Institute of Psychiatry in Munich, the University Clinic in Bonn, and Charité in Berlin illustrates how even basic research can lead to new medical treatments. The ... more

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. more

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? more

    Chaperones - folding helpers in the cell

    Nothing works without the correct form: For most proteins, there are millions of ways in which these molecules, composed of long chains of amino acids, can be folded - but only one way is the right one. Researchers in the department "Cellular Biochemistry" at the Max Planck Institute for Bi ... more

  • Research Institutes

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    The research institutes of the Max Planck Society perform basic research in the interest of the general public in the natural sciences, life sciences, social sciences, and the humanities. In particular, the Max Planck Society takes up new and innovative research areas that German universiti ... more