13-May-2022 - Centre National de la Recherche Scientifique - CNRS

Hepatitis: 3D structure determination of the ‘gateway’ to the liver

Though an essential gateway to the liver, NTCP had not been well described until now. Na+-taurocholate co-transporting polypeptide (NTCP) is a protein located exclusively in the membrane of liver cells that enables recycling of bile acid molecules. It is also the cellular receptor of human hepatitis B and D viruses (HBV/HDV). A better understanding of NTCP could enable the development of treatments specifically designed for the liver, and to fight HBV and HDV infection.

NTCP is a difficult protein to study. It weighs only 38 kilodaltons (kDa), whereas cryo-electron microscopy,  the technology used to study this type of molecule, only works for molecules weighing more than 50 kDA. The challenge was therefore to “enlarge” and stabilise it.

To do this, teams from French and Belgian laboratories developed and tested a collection of antibody fragments targeting NTCP. The 3D structures of the resulting complexes were determined using cryo-electron microscopy, and different antibody fragments stabilised and revealed several forms of NTCP.

The research team was able to describe two essential NTCP conformations: one in which the protein opens a large membrane pore to bile salts, to which HBV and HDV can bind, and a second, ‘closed’ conformation, that prevents recognition by the viruses.

The first, ‘open’ conformation is very surprising, as no other known molecular transporter forms such a ‘wide open’ pore. In turn, the second conformation could help finding antiviral molecules that prevent HBV and HDV infection. The research team intends to continue its work to fully elucidate the functioning of NTCP.

Facts, background information, dossiers
  • cryo-electron microscopy
More about Centre National de la Recherche Scientifique
  • News

    Healthy cells can impact tumour progression during embryonic development

    Half of childhood cancers arise during the development of the human embryo, which greatly complicates research into these diseases. The team of Valérie Castellani, CNRS senior researcher at the Mechanisms in Integrated Life Sciences (MeLiS) laboratory (CNRS / INSERM / Claude Bernard Lyon 1 ... more

    Ants can “sniff out” cancer!

    Cancer detection is a major public health challenge, and the methods currently available to achieve it, for example MRIs and mammograms, are often expensive and invasive. This limits their large-scale use. To bypass these constraints, alternative methods are being studied, like the use of a ... more

    Useful “Fake” Peptides

    Some useful drugs consist of peptides acting on their protein targets. To make them more efficient and stable, scientists have found a way to replace crucial segments of the peptides with ureido units. These oligoureas, which are composed of urea-based units, fold into a structure similar t ... more

  • Research Institutes

    Centre National de la Recherche Scientifique - CNRS

    The Centre National de la Recherche Scientifique (National Center for Scientific Research) is a government-funded research organization, under the administrative authority of France's Ministry of Research. Founded in 1939 by governmental decree, CNRS has the following missions: * To e ... more