16-Jun-2021 - Scuola Internazionale Superiore di Studi Avanzati (SISSA)

RNA: A new method to discover its high-resolution structure

New research combines experimental data and molecular dynamics simulations to study biomolecules in their natural environment

The structure of a biomolecule can reveal much about its functioning and interaction with the surrounding environment. The double-helical structure of DNA and its implications for the processes of transmission of genetic information form an obvious example. In a new study by SISSA - Scuola Internazionale Superiore di Studi Avanzati, published in Nucleic Acids Research, experimental data were combined with computer simulations of molecular dynamics to examine the conformation of an RNA fragment involved in protein synthesis and its dependence on the salts present in the solution. The research has led to a new method for high-resolution definition of the structures of biomolecules in their physiological environments.

"X-ray crystallography, as used to discover the double-helical conformation of DNA, remains one of the most common techniques for studying biomolecule structures", explains SISSA physicist Giovanni Bussi. "This technique allows us to reconstruct the image of the molecule in solid state crystalline form. However, this yields a static view of the structure that may not correspond to that assumed in the aqueous natural environment in which biomolecules are normally found."

This is why researchers began to use the small-angle X-ray scattering (SAXS) technique in the last decade to study RNA molecules, which can have highly dynamic structures. This method can be used directly in aqueous solutions that reproduce the physiological environment. Furthermore, the composition of the solutions can be modified to study how the molecules adapt to different conditions. Unfortunately, however, SAXS has limited resolution, in the order of a nanometer. Giovanni Bussi and Mattia Bernetti, a research fellow at SISSA, therefore decided to enhance SAXS via a 'computational microscope', combining it with molecular dynamics simulations that allow computerised reconstruction of molecular structures at the atomic level.

"We studied a fragment of ribosomal RNA involved in protein synthesis," explain the researchers. "We used SAXS data, derived from aqueous solutions containing different mixtures of salts, that was provided by Kathleen B. Hall of the Washington University School of Medicine in St Louis, and combined them with molecular dynamics simulations. By this means we discovered the existence of two distinct conformations: one more compact and functional to the protein synthesis process, the other more extended, confirming the dynamic nature of RNA. In particular, we noticed how the prevalence of one structure over the other varies with the salts dissolved in solution, further underlining the importance of studying these molecules in an environment as similar as possible to that of the cell."

Bernetti and Bussi conclude that the results of the study, published in Nucleic Acids Research, have significance beyond the specific case and indicate an innovative method offering two advantages: "In this work, we combined molecular dynamics simulations and SAXS experimental data to obtain high-resolution structures of RNA biomolecules. This is a useful approach in two senses: on one hand, it allows detail to be added to SAXS experimental data, which in fact give a very approximate view; on the other hand, it allows results of molecular dynamics to be corrected if the models used in the simulations are insufficiently accurate."

Facts, background information, dossiers
  • molecular dynamics…
  • SAXS
More about SISSA
  • News

    How the brain constructs the world

    How are raw sensory signals transformed into a brain representation of the world that surrounds us? The question was first posed over 100 years ago, but new experimental strategies make the challenge more exciting than ever. SISSA investigators have now uncovered the contributions to percep ... more

    Towards more effective therapies to fight breast cancer

    Breast cancer is one of the most common cancers in women in Italy and in the world. Today, however, it seems possible to design more selective and effective drugs through numerical simulations. This is what has been revealed by research carried out by the "Istituto Officina dei Materiali" ( ... more

    It is easier for a DNA knot...

    Anyone who has been on a sailing boat knows that tying a knot is the best way to secure a rope to a hook and prevent its slippage. The same applies to sewing threads where knots are introduced to prevent them slipping through two pieces of fabric. How, then, can long DNA filaments, which ha ... more

  • Videos

    Knot DNA


  • Research Institutes


    SISSA, the International School for Advanced Studies of Trieste, is an institute focused on postgraduate training and leading-edge research in various areas of Physics, Mathematics, and Neurosciences. SISSA was the first Italian university to offer the PhD degree, and has continued to do so ... more