19-Jan-2021 - Osaka University

Nanodiamonds feel the heat

Nanodiamond sensor can act as both heat sources and thermometers, and may lead to a new set of heat-based treatments for killing bacteria or cancer cells

A team of scientists from Osaka University, The University of Queensland, and the National University of Singapore's Faculty of Engineering used tiny nanodiamonds coated with a heat-releasing polymer to probe the thermal properties of cells. When irradiated with light from a laser, the sensors acted both as heaters and thermometers, allowing the thermal conductivity of the interior of a cell to be calculated. This work may lead to a new set of heat-based treatments for killing bacteria or cancer cells.

Even though the cell is the fundamental unit of all living organisms, some physical properties have remained difficult to study in vivo. For example, a cell's thermal conductivity, as well as the rate that heat can flow through an object if one side is hot while the other side is cold, remained mysterious. This gap in our knowledge is important for applications such as developing thermal therapies that target cancer cells, and for answering fundamental questions about cell operation.

Now, the team has developed a technique that can determine the thermal conductivity inside living cells with a spatial resolution of about 200 nm. They created tiny diamonds coated with a polymer, polydopamine, that emit both fluorescent light as well as heat when illuminated by a laser. Experiments showed that such particles are non-toxic and can be used in living cells. When inside a liquid or a cell, the heat raises the temperature of the nanodiamond. In media with high thermal conductivities, the nanodiamond did not get very hot because heat escaped quickly, but in an environment of low thermal conductivity, the nanodiamonds became hotter. Crucially, the properties of the emitted light depend on the temperature, so the research team could calculate the rate of heat flow from the sensor to the surroundings.

Having good spatial resolution allowed measurements in different locations inside the cells. "We found that the rate of heat diffusion in cells, as measured by the hybrid nanosensors, was several times slower than in pure water, a fascinating result which still waits for a comprehensive theoretical explanation and was dependent on the location," senior author Taras Plakhotnik says.

"In addition to improving heat-based treatments for cancer, we think potential applications for this work will result in a better understanding of metabolic disorders, such as obesity," senior author Madoka Suzuki says. This tool may also be used for basic cell research, for example, to monitor biochemical reactions in real time.

Facts, background information, dossiers
  • thermal conductivity
  • cancer
  • nanosensors
More about Osaka University
  • News

    Artificial intelligence makes enzyme engineering easy

    You can't expect a pharmaceutical scientist to switch labs to the facilities available in a television studio and expect the same research output. Enzymes behave exactly the same. But now, in a study recently published in ACS Synthetic Biology, researchers from Osaka University have imparte ... more

    A major advance in single-cell RNA data analysis

    New developments in high-throughput biological studies mean that the genes that are active in just a single cell can now be determined. However, analyzing the complex datasets that result can be challenging. Now, a team at Osaka University has developed CAPITAL, a new computational tool for ... more

    Light-powered microbes are super-producing chemical factories

    Sharing is key to living in society, whether it’s toddlers sharing toys or nations sharing natural resources; but there’s no avoiding the fact that one side getting more means that the other side gets less. Now, researchers from Osaka University, in collaboration with the University of Shiz ... more

More about University of Queensland
  • News

    Fighting fungal infections with metals

    An international collaboration led by researchers from the University of Bern and the University of Queensland in Australia has demonstrated that chemical compounds containing special metals are highly effective in fighting dangerous fungal infections. These results could be used to develop ... more

    Superworms capable of munching through plastic waste

    Researchers at the University of Queensland have found a species of worm with an appetite for polystyrene could be the key to plastic recycling on a mass scale. Scientists discovered the common Zophobas morio ‘superworm’ can eat through polystyrene, thanks to a bacterial enzyme in their gut ... more

    Very venomous caterpillar has strange biology

    The venom of a caterpillar, native to South East Queensland, shows promise for use in medicines and pest control, Institute for Molecular Bioscience researchers say. The Doratifera vulnerans is common to large parts of Queensland's south-east and is routinely found in Toohey Forest Park on ... more

More about National University of Singapore