25-Feb-2020 - Aalto University

The combination of plant-based particles and water forms an 'eco' super-glue

In a study published in Advanced Materials, researchers at Aalto University, the University of Tokyo, Sichuan University, and the University of British Columbia have demonstrated that plant-derived cellulose nanocrystals (CNCs) can form an adhesive that fully integrates the concepts of sustainability, performance, and cost which are generally extremely challenging to achieve simultaneously.

Unlike Superglue, the new eco glue develops its full strength in a preferred direction, similar to "Peel and Stick" adhesives. When trying to separate the glued components along the principal plane of the bond, the strength is more than 70 times higher when compared to the direction perpendicular to that plane. All of this means that just a single drop of the "eco" glue has enough strength to hold up to 90kg weight, but can still be easily removed by the touch of a finger, as needed. As Dr Blaise Tardy from the Aalto Department of Bioproducts and Biosystems puts it, 'The ability to hold this amount of weight with just a few drops is huge, especially from a natural plant-based solution'.

These kind of properties are useful in protecting fragile components in machines that can undergo sudden physical shock such as high-value components in microelectronics, to increase the reusability of valuable structural and decorative elements, in new solutions for packaging applications, and - in general - for the development of greener adhesive solutions.

Producing a comparable product to a market leader at low cost and with new properties

Furthermore, compared to the current approach of making high-strength glues that can involve complex and expensive routes, the team has demonstrated that their solution is just taking biobased particles sources from plants (with a comparatively negligible cost) and just adding water. Since curing time is associated with evaporation of the water phase (~2 hours, currently), it can be controlled, for instance, with heat.

Aalto Professor Orlando Rojas says, 'Reaching a deep understanding on how the cellulose nanoparticles, mixed with water, to form such an outstanding adhesive is a result of the work between myself, Dr Tardy, Luiz Greca, Professor Hirotaka Ejima, Dr Joseph J. Richardson and Professor Junling Guo and it highlights the fantastic collaboration and integration of knowledge towards the development of an extremely appealing, low-cost and safe application'.

'Good, green packaging with bad glue still renders the packaging bad' - Dr Blaise Tardy

Moreover, the prospects for worldwide utilisation (in a 40B€ industry) is quite attractive given the ever-increasing production of cellulose nanocrystals seen across the globe, as supported by incentives in the framework of the circular bioeconomy.

Dr Tardy adds, 'The truly exciting aspect of this is that although our new adhesive can be sourced directly from residual biomass, such as that from the agro-industry or recycled paper; it outperforms currently available commercial synthetic products by a great many measures'.

Facts, background information, dossiers
  • cellulose nanocrystals
  • adhesives
  • glues
More about Aalto University
More about University of Tokyo
  • News

    Hero proteins are here to save other proteins

    Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments. The Hero proteins are heat resistant and are widespread in animal ... more

    Enduring cold temperatures alters fat cell epigenetics

    A new study in fat cells has revealed a molecular mechanism that controls how lifestyle choices and the external environment affect gene expression. This mechanism includes potential targets for next-generation drug discovery efforts to treat metabolic diseases including diabetes and obesit ... more

    Near-infrared photoactivatable oxygenation catalysts of amyloid peptide

    A new, biocompatible photooxygenation catalyst that can selectively oxygenate and degrade the pathogenic aggregation of Alzheimer's disease (AD)-related amyloid-β peptide (Aβ) under near-infrared (NIR) light irradiation is developed. The catalyst was able to oxygenate Aβ embedded under the ... more

More about Sichuan University
  • News

    Proteins for Making Tough Rubber

    Inspired by nature, Chinese scientists have produced a synthetic analogue to vulcanized natural rubber. Their material is just as tough and durable as the original. In the journal Angewandte Chemie, they reveal the secret to their success: short protein chains attached to the side-chains of ... more

More about University of British Columbia