My watch list
my.bionity.com  
Login  

ClpX-ClpP protein complex could be starting point for new antibiotics

Weak spot in pathogenic bacteria

08-Oct-2019

C. Gatsogiannis / MPI für molekulare Physiologie

Three cryo-electron microscopic views of the protein complex ClpX-ClpP.

Antibiotics are still the most important weapon for combatting bacterial infections. But medical science is running out of “ammunition” because of more and more frequently occurring resistances. A research team has now elucidated the structure of the proteolytic complex ClpX-ClpP. This is a key to development of innovative antibiotics which target the degradation process of defective proteins in bacteria.

Almost 700,000 people in Europe suffer from infections every year through antibiotic-resistant pathogens; approximately 33,000 of them die. Despite this enormous and globally increasing danger, very few new antibiotics have been developed and approved in the past few decades.

There is no improvement in sight. That is why it is urgently necessary to find new points of attack in pathogenic bacteria and to develop new antibiotics which exploit these weak spots.

New mechanism of action destroys bacteria

A particularly promising point of attack for antibacterial therapies is the proteolytic enzyme ClpP: on the one hand it plays an important role in bacterial metabolism, and on the other hand it ensures the controlled degradation of defective proteins.

But for this purpose it requires the ClpX protein as a starting aid. In the complex with ClpP, ClpX identifies proteins which should be degraded, unfurls them and guides them into its barrel-like degradation chamber.

Scientists in the groups led by Prof. Stephan Sieber, Technical University of Munich (TUM) and Prof. Stefan Raunser, Director at the Max Planck Institute of Molecular Physiology in Dortmund, have now elucidated the three-dimensional structure of the ClpX-ClpP proteolytic complex for the first time and thereby established an important basis for future pharmacological applications.

A new class of potential antibiotics – the so-called acyldepsipeptide (ADEP) antibiotics – also brings about an uncontrolled degradation through ClpP without the support of ClpX. As a result also vital proteins are destroyed – with lethal consequences for the bacteria.

This unique mechanism of action has considerable innovation potential in the fight against pathogenic bacteria. Whereas common antibiotics act through the inhibition of vital processes, in this case the antibacterial effect is achieved through the activation of a process.

Disarming bacteria

In addition to the degradation of defective proteins, ClpP is also a decisive regulator in the production of an arsenal of bacterial toxins which are primarily responsible for the pathogenic effect of many pathogens.

At the TUM, the group led by Prof. Stephan Sieber has been successfully researching the ClpP protease for years, and has already developed a large number of potent inhibitors against ClpP and ClpX which stop the production of bacterial toxins and can therefore more or less disarm them. Dóra Balogh has now managed to produce and stabilize the ClpX-ClpP complex.

New possibilities through the elucidation of the structure of ClpX-ClpP

But up to recently the structure of the ClpX-ClpP complex could not yet be elucidated in detail. Dr. Christos Gatsogiannis, researcher in the group led by Prof. Stefan Raunser at the MPI of Molecular Physiology, has now managed this by means of cryogenic electron microscopy.

With this technology they were able to demonstrate that ADEP and ClpX dock onto ClpP at the same spot, but control the process of protein degradation in a different way: Whereas ClpX does not lead to an alteration in the structure of ClpP, ADEP brings about an unintended opening of the complex. As a result, intact proteins are also degraded in an uncontrolled manner and without the support of ClpX.

The clarification of this mechanism by the research teams from Dortmund and Munich is a milestone on the way to the development of innovative antibiotic substances targeting ClpP.

Facts, background information, dossiers
More about TU München
  • News

    Cancer: Inactive receptor renders immunotherapies ineffective

    The aim of immunotherapies is to enable the immune system once again to fight cancer on its own. Drugs known as checkpoint inhibitors are already in clinical use for this purpose. However, they are only effective in about one third of patients. Based on analysis of human tissue samples, a t ... more

    The secret of motivation

    Success is no accident: To reach your goal you need perseverance. But where does the motivation come from? An international team of researchers led by scientists from the Technical University of Munich (TUM) has now identified the neural circuit in the brain of fruit flies which makes them ... more

    Chaperones detect immature signaling molecules in the immune system

    The cells of our immune system constantly communicate with one another by exchanging complex protein molecules. A team led by researchers from the Technical University of Munich (TUM) has now revealed how dedicated cellular control proteins, referred to as chaperones, detect immature immune ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE