How plants defend themselves
Plant immune system detects bacteria through small fatty acid molecules
Like humans and animals, plants defend themselves against pathogens with the help of their immune system. But how do they activate their cellular defenses? Researchers at the Technical University of Munich (TUM) have now discovered that receptors in plant cells identify bacteria through simple molecular building blocks.

Arabidopsis thaliana leaves are infected by simply pressure-infiltrating a solution containing the bacteria.
A. Eckert / TUM
"The immune system of plants is more sophisticated than we thought," says Dr. Stefanie Ranf from the Chair of Phytopathology of the TU Munich. Together with an international research team, the biochemist has discovered substances that activate plant defense.
Until now, scientists have thought that plant cells – similar to those of humans and animals – recognize bacteria through complex molecular compounds, for example from the bacterial cell wall. In particular, certain molecules composed of a fat-like part and sugar molecules, lipopolysaccharides or LPS for short, were suspected of triggering an immune response.
In 2015, Ranf's team successfully identified the respective receptor protein: lipo-oligosaccharide-specific reduced elicitation, or LORE for short. All experiments indicated that this LORE protein activates the plant cell's immune system when it detects LPS molecules from the cell wall of certain bacteria.
A throwback leads to the right track
"The surprise came when we wanted to study this receptor protein more closely," recalls Ranf. "Our goal was to find out how LORE distinguishes different LPS molecules. For this we needed high-purity LPS. "
The researchers found that only LPS samples with certain short fatty acid constituents triggered plant defense. Surprisingly, they found in all these active LPS samples also extremely strong adhering free fatty acid molecules. Only after months of experimentation was the team able to separate these free fatty acids from the LPS.
"When we finally succeeded in producing highly purified LPS, it became apparent that the plant cell did not respond to them at all! Thus, it was clear that the immune response is not triggered by LPS, but instead by these short fatty acids" said Ranf.
Targeting bacteria building blocks
The 3-hydroxy fatty acids are very simple chemical building blocks compared to the much larger LPS. They are indispensable for bacteria and are produced in large quantities for incorporation into diverse cellular components.
"The strategy of plant cells to identify bacteria through these basic building blocks is extremely sophisticated; the bacteria require these 3-hydroxy fatty acids and therefore cannot bypass the immune response," summarizes Ranf.
Fitness program for plants
In the future, these results could help in breeding or genetically engineering plants with an improved immune response. It is also conceivable that plants treated with 3-hydroxy fatty acids would have increased resistance to pathogens.
Original publication
"Bacterial medium chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants" Alexander Kutschera, Corinna Dawid, Nicolas Gisch, Christian Schmid, Lars Raasch, Tim Gerster, Milena Schäffer, Elwira Smakowska-Luzan, Youssef Belkhadir, A. Corina Vlot, Courtney E. Chandler, Romain Schellenberger, Dominik Schwudke, Robert K. Ernst, Stéphan Dorey, Ralph Hückelhoven, Thomas Hofmann, Stefanie Ranf; Science; April 12, 2019
Original publication
"Bacterial medium chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants" Alexander Kutschera, Corinna Dawid, Nicolas Gisch, Christian Schmid, Lars Raasch, Tim Gerster, Milena Schäffer, Elwira Smakowska-Luzan, Youssef Belkhadir, A. Corina Vlot, Courtney E. Chandler, Romain Schellenberger, Dominik Schwudke, Robert K. Ernst, Stéphan Dorey, Ralph Hückelhoven, Thomas Hofmann, Stefanie Ranf; Science; April 12, 2019
Organizations
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents

Gene editing via CRISPR/Cas9 can lead to cell toxicity and genome instability - Researchers identify critical spots on the genome where gene editing could cause an unwanted response, and they provide recommendations for safer approaches
Category:Aldosterone_antagonists

The human immune system is an early riser - Scientists show that activation of the immune system oscillates throughout the day, with a peak just before the start of the day

A toxic bullet involved in bacterial competition
Vozrozhdeniya_Island
WACKER Expands Its Integrated Ketene Production in Burghausen
Liquid-crystal and bacterial living materials self-organize and move in their own way

Analytica Anacon India and India Lab Expo 2016 in the starting blocks - Ninth edition expected to bring together more than 8,500 trade professionals
Analytica Anacon India changing its location - Conference theme announced
Lupus_erythematosus
