28-Mar-2019 - Lund University

Bacteria could become a future source of electricity

In recent years, researchers have tried to capture the electrical current that bacteria generate through their own metabolism. So far, however, the transfer of the current from the bacteria to a receiving electrode has not been efficient at all. Now, researchers from institutions including Lund University have achieved a slightly more efficient transfer of electrical current.

One of society's greatest challenges is to meet the need for renewable and sustainable energy. Interest is growing around one potential such energy source: bacteria.

"We pick up electrons from the bacterium and transfer them to an electrode. This enables us to obtain an electrical current from the bacteria in real time, while they are eating, as it were", explains Lo Gorton, professor of chemistry at Lund University in Sweden.

"This study is a breakthrough in our understanding of extracellular electron transfer in bacteria", he says.

Extracellular electron transfer refers to the current that bacteria can generate outside their own cell. The difficulty when extracting the energy is to produce a molecule that can get through the bacterium's thick cell wall to retrieve the electrons there more efficiently. In the current study, the researchers created an artificial molecule for this purpose, known as a redox polymer. The type of bacteria studied is a common intestinal bacterium present in both animals and humans, Enterococcus faecalis.

The results of the study are valuable not only for their potential with regard to future bacterial electrical energy; they also increase our understanding of how bacteria communicate with their surroundings. The bacteria themselves probably use extracellular electron transfer to communicate, both with other bacteria and with molecules.

"Electron transfer could be of great significance for how the bacteria communicate with various molecules and with each other in our digestive system, but also for how nature functions in a broader perspective. It is thought today that many geological processes are bacteria-driven", says Lo Gorton.

Understanding how bacteria function and communicate is valuable in many contexts. For example, bacteria and other micro-organisms can be used to produce biofuel, in what is known as microbial biofuel cells. Of particular interest in an energy context are the photosynthesising bacteria. If they are attached to an electrode, they can generate electric energy when exposed to light. This has been shown by Lo Gorton and his colleagues in previous studies.

Deeper knowledge about bacteria is also significant in terms of potentially using them to purify wastewater, to produce molecules that are difficult to synthesise or to reduce carbon dioxide into a more usable form, for example.

Facts, background information, dossiers
  • renewable energy
  • electron transfer
  • electrons
  • redox polymers
  • Enterococcus faecalis
More about Lund University
  • News

    Detect Alzheimer's disease as early as 20 years before the onset?

    A new blood test demonstrated remarkable promise in discriminating between persons with and without Alzheimer's disease and in persons at known genetic risk may be able to detect the disease as early as 20 years before the onset of cognitive impairment, according to a large international st ... more

    Can we repair the brain?

    Cell replacement may play an increasing role in alleviating the motor symptoms of Parkinson's disease (PD) in future. Writing in a special supplement to the Journal of Parkinson's Disease, experts describe how newly developed stem cell technologies could be used to treat the disease and dis ... more

    New method enables accurate diagnosis of Alzheimer's disease

    Diagnosing Alzheimer's disease can be difficult, as several other conditions can cause similar symptoms. Now a new brain imaging method can show the spread of specific tau protein depositions, which are unique to cases with Alzheimer's. "The method works very well. I believe it will be appl ... more