From Receptor Structure to New Osteoporosis Drugs
Researchers at the University of Zurich have determined the three-dimensional structure of a receptor that controls the release of calcium from bones. The receptor is now one of the main candidates for developing new drugs to treat osteoporosis. Knowing the receptor's blueprint will be instrumental for designing drugs that could even help to rebuild bones.

Osteoporosis mostly affects women after menopause. Bone loss usually occurs little by little over the years.
sabinevanerp, pixabay.com, CC0

Structure of the PTH-1 receptor: it consists of an extracellular part (purple) and a part that resides in the membrane (green). Parathyroid hormone (orange) activates the receptor.
UZH


Osteoporosis affects about 400,000 people in Switzerland, mostly women after menopause. It is often described as a silent disease, because bone loss usually occurs little by little over the years and without any symptoms. The body gradually absorbs calcium from the bones, which become brittle. This process is controlled via what is called the parathyroid hormone (PTH) and a closely related peptide – a protein fragment. They bind to the PTH-1 receptor, thereby telling the body to either release calcium from the bone or to build new bone.
An extremely difficult undertaking
A team led by Andreas Plückthun, professor at the Department of Biochemistry of the University of Zurich (UZH), has now been able to determine the three-dimensional structure of the PTH-1 receptor. The atomic structure can now serve as the blueprint for the future development of drugs. Such receptor-binding compounds may slow down, and perhaps even reverse, osteoporosis to some degree. Determining the structure of this receptor was an extremely tough undertaking, as cells only produce a very small amount of it, and it is also very unstable. “The directed evolution and protein engineering methods we have developed over the last few years were absolutely instrumental in making this possible,” explains Andreas Plückthun.
Disadvantages of current treatment
One of the most effective current treatments for severe osteoporosis involves the use of substances that look like the natural hormone and its related peptide. “However, this treatment is extremely expensive. The substances have to be injected into the thigh or abdomen once a day, and the treatment also has significant side effects,” says Christoph Klenk, co-author of the study. The scientists are convinced that thanks to the new insights into the mechanisms of the PTH-1 receptor, new drugs can be developed that don’t have any of the previous disadvantages. “The receptor is like a lock, and the peptides are the keys that turn it,” describes Plückthun. “Having the atomic 3D blueprint on a computer screen gives us an unprecedented level of insight into how the lock actually works.”
Understanding a whole class of receptors
The PTH-1 receptor is a member of the family of G protein-coupled receptors. In particular, these include receptors that bind to other hormones, such as the ones involved in controlling diabetes. The work by the UZH scientists thus also sheds light on how the whole family of receptors works, as the PTH-1 receptor was examined at the highest level of detail for any of these receptors so far. This has enabled the scientists to describe similarities as well as differences to other class B receptors. “Having the blueprint of the lock doesn’t give us a key yet, but now it’s possible to build one,” says Andreas Plückthun.
Original publication
Original publication
Janosch Ehrenmann, Jendrik Schöppe, Christoph Klenk, Mathieu Rappas, Lutz Kummer, Andrew S. Doré, Andreas Plückthun; "High-resolution crystal structure of parathyroid hormone 1 receptor in complex with a peptide agonist"; Nature Structural and Molecular Biology; November 19, 2018.
Organizations
Other news from the department science

Get the life science industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents

When push comes to shove: Size matters for particles in our bloodstream
List_of_antioxidants_in_food
Archives_of_Pediatrics_&_Adolescent_Medicine
BASF’s Nutrition & Health division to focus on growth and increased competitiveness - Reduction of about 260 positions worldwide by end of 2015
Fisher Biosciences unit, Cellomics, and Evotec Technologies Sign License Agreement - Companies to collaborate on cell-biology solutions for life-science markets
Arthur_Peacocke
University of Konstanz and Johns Hopkins Bloomberg School of Public Health Establish Center of Alternatives to Animal Testing
CyBio and LiCONiC Instruments Announce a Distribution Partnership
