My watch list  

Spinocerebellar tract

Brain: Spinocerebellar tract
Spinocerebellar tract is #4, in blue at right.
Gray's subject #185 761
NeuroNames ancil-2137625602

The spinocerebellar tract is a set of axonal fibers originating in the spinal cord and terminating in the ipsilateral cerebellum. This tract conveys information to the cerebellum about limb and joint position (proprioception).


Origins of proprioceptive information

Proprioceptive information is obtained by Golgi tendon organs and muscle spindles.

  • Golgi tendon organs consist of a fibrous capsule enclosing tendon fasciculi and bare nerve endings that respond to tension in the tendon by causing action potentials in 1β afferent neurones (relatively large, myelinated, quickly conducting).
  • Muscle spindles fibres are complicated systems of tension monitoring within muscles which result in information being carried via 1α neurones (larger and faster than 1β) (from both nuclear bag fibres and nuclear chain fibres) and II neurones (solely from nuclear chain fibres).

All of these neurones are "first order" or "primary", are sensory (and thus have their cell bodies in the dorsal root ganglion) and pass through Rexed laminae layers I-VI of the dorsal horn, to form synapses with "second order" or "secondary" neurones in the layer just beneath the dorsal horn (layer VII)

Subdivisions of the tract

The tract is divided into:

Division Information Limbs
dorsal (posterior) spinocerebellar tract Information from muscle spindles hind limbs
ventral (anterior) spinocerebellar tract Information from golgi tendon organs hind limbs
spinocuneocerebellar tract Information from muscle spindles forelimbs
rostral spinocerebellar tract Information from golgi tendon organs forelimbs

Pathway for dorsal and spinocuneocerebellar tracts

In the dorsal tract, the sensory neurones synapse in an area known as Clarke's nucleus or "Clarke's column".

This is a column of relay neurone cell bodies within the medial gray matter within the spinal cord in layer VII (just beneath the dorsal horn), specifically between C8-L3. These neurones then send axons up the spinal cord and form synapses in the accessory (lateral) cuneate nucleus, lateral to the cuneate nucleus in the medulla.

Below L3, relevant neurones pass into the fasciculus gracilis (usually associated with the dorsal column-medial lemniscal system) until L3 where they synapse with Clarke's nucleus (leading to considerable caudal enlargement).

From above C8, neurones enter the fasciculus cuneatus directly and again synapse with neurones in the accessory cuneate nucleus. This pathway is known as the spinocuneocerebellar tract.

The neurones in the accessory cuneate nucleus have axons leading to the ipsilateral cerebellum via the caudal cerebellar peduncle.

Pathway for ventral and rostral tracts

Some neurones instead form synapses with neurones in layer VII of L4-S3. Most of these fibres cross over to the contralateral lateral funiculus via the anterior white commissure and proceed up the spinal cord to synapse with neurones in the superior cerebellar peduncle. The fibres then often cross over again within the cerebellum to end on the ipsilateral side.

The Rostral Tract is similar but is uncrossed and enters the cerebellum through both the superior and inferior cerebellar peduncles.

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Spinocerebellar_tract". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE