Meine Merkliste
my.bionity.com  
Login  

Zucker beeinflusst den Zeitpunkt der Blütenbildung

Nur wenn Licht, Alter und Energiegehalt stimmen, blüht eine Pflanze

Josef Bergstein, MPI-MP

Durch Experimente an Arabidopsis thaliana fanden die Forscher heraus, dass das Zuckermolekül Trehalose-6-Phosphat den Zeitpunkt der Blütenbildung beeinflusst.

08.02.2013: Eine Pflanze kann sich nur dann erfolgreich vermehren, wenn sie zur richtigen Zeit blüht. Ein komplexes Netzwerk aus Lichtrezeptoren und anderen Proteinen überwacht kontinuierlich Umweltbedingungen wie Licht und Temperatur, um den perfekten Zeitpunkt für den Beginn der Blütenbildung zu finden. Schon lange wurde vermutet, dass Pflanzen sich auch dahingehend absichern müssen, dass ihnen genügend Energie für diesen kräftezehrenden Prozess zur Verfügung steht. Wie Forscher vom Max-Planck-Institut für Molekulare Pflanzenphysiologie in Potsdam und dem Max-Planck-Institut für Entwicklungsbiologie in Tübingen jetzt berichten, übernimmt in der Ackerschmalwand, Arabidopsis thaliana, das Zuckermolekül Trehalose-6-Phosphat (T6P) eine Schlüsselrolle bei der Überwachung der Energiereserven und somit bei der Entscheidung, wann die Blütenbildung beginnt.

Die Tageslänge ist einer der wichtigsten Faktoren für den Beginn der Blütenbildung. Manche Pflanzen brauchen lange Tage und blühen daher im Sommer, andere bevorzugen kürzere Tage und blühen dementsprechend im Frühjahr oder Herbst. Die Tageslänge nehmen die Pflanzen über die Blätter wahr. Bei den richtigen Lichtbedingungen führt ein Zusammenspiel aus Lichtrezeptoren und anderen Proteinen dazu, dass im Zellkern der Ackerschmalwand das Gen FLOWERING LOCUS T (FT) abgelesen wird. Das FT-Protein wandert bis in die Sprossspitze und bewirkt, dass anstelle der Blätter nun Blüten gebildet werden.

Ab einem bestimmten Alter beginnt die Ackerschmalwand jedoch ganz unabhängig von der Tageslänge mit der Blütenbildung. Dieser Sicherheitsmechanismus wird durch eine spezielle Mikro-RNA kontrolliert und gewährleistet, dass sich Pflanzen auch unter weniger guten Bedingungen fortpflanzen.

Neben Licht und Alter scheint auch der Energiestatus der Pflanze den Zeitpunkt der Blütenbildung maßgeblich zu beeinflussen. Die Bildung von Blüten ist ein äußerst energieintensiver Prozess und diese Energie muss in der Pflanze in Form von Zucker bereitstehen. Lange Zeit war nicht klar, auf welche Weise Zuckermoleküle den Zeitpunkt der Blütenbildung mitbestimmen. Wissenschaftler des Max-Planck-Instituts für molekulare Pflanzenphysiologie und des Max-Planck-Instituts für Entwicklungsbiologie haben jetzt herausgefunden, dass das Zuckermolekül T6P gleich beide oben beschriebenen Signalwege beeinflusst.

„Da T6P in Pflanzen nur in kleinsten Mengen vorkommt, nahm man an, dass es sich hierbei um ein Signalmolekül handeln könnte“, erklärt Vanessa Wahl, die Erstautorin der Veröffentlichung. „Allerdings wusste bisher niemand, wie das Molekül in das komplexe genetische Netzwerk, das den Zeitpunkt der Blütenbildung steuert, eingreift.“ Indem die Forscher die Produktion von T6P beeinträchtigten, konnten sie das Blühen verzögern und im Extremfall sogar vollständig verhindern. Das gelang selbst dann, wenn die Pflanzen ansonsten optimalen Bedingungen ausgesetzt waren. „Wir konnten zeigen, dass dieser Zucker unverzichtbar für die Herstellung des FT-Proteins in den Blättern ist“, ergänzt ihr Kollege und korrespondierender Autor Markus Schmid, „und wie wir wissen, ist die Blütenbildung ohne FT sehr verzögert.“

Darüber hinaus beeinflusst T6P sowohl die Herstellung der Mikro-RNA als auch die Umsetzung ihrer Zielgene, welche zusammen die altersabhängige Induktion des Blühens kontrollieren. Das Zuckermolekül steuert somit zwei der wichtigsten Kontrollwege, die den Zeitpunkt der Blütenbildung regulieren.

„Obwohl klar war, dass die Pflanze ihren Energiegehalt überprüfen muss, bevor sie mit der Blütenbildung beginnt, gab es bisher keine Erklärung dafür, wie das auf molekularer Ebene funktionieren sollte“, beschreibt Vanessa Wahl den Stand der Wissenschaft vor der Entdeckung. Dem Wissen über das komplexe Netzwerk, das die Blütenbildung reguliert, konnten die Forscher aus Potsdam und Tübingen einen wichtigen Faktor hinzufügen.

Fakten, Hintergründe, Dossiers
  • MPI für molekulare…
  • MPI für Entwicklung…
Mehr über MPI für Entwicklungsbiologie
Mehr über MPI für molekulare Pflanzenphysiologie
  • News

    Wilde Gene gegen Stress

    Die aus den Anden stammende Wildtomate Solanum pennellii zeichnet sich durch eine enorme Stresstoleranz aus, zum Beispiel gegenüber Trockenheit. Um diese Eigenschaft auch für Kulturtomaten nutzbar zu machen, wurde Solanum pennellii schon oft für Kreuzungen benutzt. Bisher war jedoch nicht b ... mehr

    Ohne Sex zu neuen Arten

    In der Natur kommt es vor, dass sich zwei  unterschiedliche Pflanzenarten miteinander kreuzen. Das ist im Normalfall ein Problem, da die Erbinformation der beiden Eltern nicht zueinander passt. Doch manchmal hilft die Natur mit einem Trick nach. Statt, wie normalerweise üblich, nur jeweils ... mehr

    Türsteher-Proteine für Pflanzenzellen

    Nährstoffe, Signalmoleküle oder sogar Viren docken laufend an Zellen an und wollen hinein. Doch nur wer von bestimmten Adapterproteinen innerhalb der Zellen erkannt wird, kann von ihnen mittels Endozytose aufgenommen werden. Ein Forscherteam um Daniël van Damme von der Universität Gent und ... mehr

  • Forschungsinstitute

    Max-Planck-Institut für molekulare Pflanzenphysiologie

    Am Max-Planck-Institut für molekulare Pflanzenphysiologie in Golm bei Potsdam untersuchen Wissenschaftler die Lebensvorgänge in pflanzlichen Zellen, Geweben und Organen. Sie wollen verstehen, wie Zellen z. B. Stoffe aufnehmen, speichern und transportieren. Sie interessiert besonders, wie Pf ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.