15-Oct-2020 - Max-Planck-Institut für Polymerforschung

Combination Therapy against Cancer

Synergistic anticancer therapy with two cell killer agent systems in one nanocapsule

In their quest to destroy cancer cells, researchers are turning to combinational therapies more and more. Scientists from Germany and China have now combined a chemotherapeutic and photodynamic approach. All agents are encapsulated in nanocapsules with a protein shell to be delivered to the tumor. There, light irradiation triggers a cascade of events, which lead to the destruction of the tumor cells, the researchers write in the journal Angewandte Chemie.

Different anticancer agents use different strategies. DNA-damaging agents make the DNA dysfunctional so the tumor cannot grow. Photodynamic agents generate reactive oxygen species (ROS) when irradiated with light. These ROS then interfere with organelles in the cell and push the cells toward programmed cell death known as apoptosis.

However, some cancer types have developed resistances. Either the drug cannot enter the cell or the cells quickly repair the damaged DNA strands. To enhance effectivity, Katharina Landfester and her colleagues from the Max Planck Institute for Polymer Research, Mainz, Germany, and researchers from Dalian University of Technology, Dalian, China, combined chemotherapeutic and photodynamic agents. All agents were packed inside a nanocapsule for delivery to the tumor cells.

Photodynamic therapy can be less effective in solid tumors within which the oxygen level is too low to generate enough ROS. Therefore, the scientists used a modified system that partly recycles oxygen. In this system, a photosensitizer produces ROS after light irradiation. Enzymes of the cell convert the ROS to hydrogen peroxide. Another reagent called Fenton reagent—which is basically iron in its highest oxidation state—then back-transforms the hydrogen peroxide to ROS and oxygen.

The authors said that it was challenging to assemble all reagents in one nanocapsule. The chemotherapeutic agent, cisplatin, is poorly soluble in water, while ovalbumin, the nanocapsule protein, does not dissolve in the organic solvent. Using a miniemulsion technique, the scientists eventually combined all three reagents in a solvent mixture and wrapped them up in a shell of ovalbumin. They stabilized and emulsified these nanocapsules by adding a copolymer based on poly(ethylene glycol).

The scientists tested this system on tumor cell lines. The nanocapsules entered the cells, released their loads, and developed ROS when irradiated with red light. The agent set also killed cells that were resistant to cisplatin or had a particularly low oxygen concentration.

The combined encapsulated drugs also stopped tumor growth in live mice. The authors found that the reagents accumulated in the tumor tissue. They also made the tumors shrink over time without affecting healthy tissue or other organs.

The authors highlighted that the anticancer agents were delivered to the tumor in nanocapsules and worked synergistically. Treatments involving only one agent, or a combination of two, were much less effective. The authors proposed that similar synergistic platforms will play a major role in future therapy settings.

Facts, background information, dossiers
More about MPI für Polymerforschung
  • News

    "Cool" Bacteria

    Because of mild winters, ski resorts produce artificial snow to supplement the natural snowfall or extend the ski-season. Ice-nucleating proteins, extracted from the bacterium Pseudomonas syringae, can make ice better than any other known material and are already used in snow making. Resear ... more

    The web of death

    According to the Federal Statistical Office of Germany, cancer is one of the most frequent causes of death, accounting for almost 25% of all deaths cases. Chemotherapy is often used as a treatment, but also brings side effects for healthy organs. Scientists around David Ng, group leader at ... more

    "Make two out of one" - Division of Artificial Cells

    The success of life on earth is based on the amazing ability of living cells to divide themselves into two daughter cells. During such a division process, the outer cell membrane has to undergo a series of morphological transformations that ultimately lead to membrane fission. Scientists at ... more

More about Angewandte Chemie
  • News

    Buttoned Up Biomolecules

    Increasing our understanding of cellular processes requires information about the types of biomolecules involved, their locations, and their interactions. This requires the molecules to be labeled without affecting physiological processes (bioorthogonality). This works when the markers are ... more

    A Hairpin to Fight Cancer

    The inhibition of pathological protein–protein interactions is a promising approach for treating a large number of diseases, including many forms of cancer. A team of researchers has now developed a bicyclic peptide that binds to β-catenin—a protein associated with certain types of tumor. T ... more

    Protected by Nanobrushes

    The ability of antibodies to recognize specific cancer cells is used in oncology to specifically target those cells with small active agents. Research published in the journal Angewandte Chemie shows that scientists have now built a transport system that delivers even large protein-based dr ... more