My watch list
my.bionity.com  
Login  

3D printed salt template for bioresorbable bone implants

28-Aug-2019

Laboratory of Metal Physics and Technology / Complex Materials / ETH Zurich

How do you turn salt and magnesium (left) into a bone implant with regularly structured pores (right)? ETH researchers developed a method using a template of 3D-printed salt (centre).

For the treatment of complex bone fractures or even missing bone parts, surgeons typically deploy metal implants. In this context, an attractive alternative to the traditional materials like bioinert titanium are biodegradable magnesium and its alloys. Implants made of the latter light metal are advantageous because they can biodegrade in the body, which can absorb magnesium as a mineral nutrient, rendering a second surgery for implant removal unnecessary. To promote rapid healing, the design of implants or their surfaces should be directed towards promotion of cellular adhesion or even in-growth. Materials researchers from the Laboratory of Metal Physics and Technology and the Complex Materials Group at ETH Zurich have therefore collaborated to develop a new procedure for the manufacture of magnesium implants that contain numerous structurally ordered pores but still retain their mechanical stability

Scaffolds made of magnesium

To create a porous structure the researchers first printed a three-dimensional salt template using a 3D printer. Because pure, standard table salt is not suitable for printing, they developed a gel-like salt paste for this purpose. The strut diameters and spacings of the salt template can be tailored by the printing process. To gain sufficient mechanical strength the salt structure was subsequently sintered. During sintering the fine-grained materials are heated significantly, while the temperature is chosen safely below the paste’s melting point to retain the structure of the workpiece.

The next step was to infiltrate the pores with magnesium melt. “The infiltrates obtained in this way are mechanically very stable and can be easily polished, turned and shaped,” says Jörg Löffler, Professor of Metal Physics and Technology in the Department of Materials. After mechanical shaping the researchers dissolved the salt, leaving a pure magnesium implant with numerous, regularly structured pores.

Decisive for clinical success

“The possibility to control the pore size, distribution and orientation in the material is decisive for clinical success, because bone cells like to grow into these pores,” says Löffler. Growth into pores is in turn decisive for the rapid integration of the implant in bone.

The new procedure for manufacturing these template structures from salt can be applied to other materials besides magnesium. Co-authors Martina Cihova and Dr Kunal Masania expect that the process can also be used to tailor pore geometries in polymers, ceramics and other light metals.

The idea of this new manufacturing procedure emerged within the framework of the Master’s thesis of Nicole Kleger, whose study was supported by an ETH Zurich Excellence Scholarship & Opportunity stipend. Her work was also awarded with the ETH medal for excellent Master’s theses. Nicole Kleger is now a doctoral student in the Complex Materials Group of ETH professor André Studart, under whose direction the initial salt template was 3D printed. In her doctoral thesis project Kleger is now developing the 3D-printing procedure further.

Facts, background information, dossiers
  • porosity
  • 3D-printing
More about ETH Zürich
  • News

    Deep learning, prefabricated

    Self-driving cars, the automatic detection of cancer cells, online translation: deep learning makes it all possible. The ETH spin-off Mirage Technologies has developed a deep learning platform that aims to help start-ups and companies more quickly develop and optimise their products. The na ... more

    Healthy organelles, healthy cells

    It has recently become clear just how important membraneless organelles are for cells. Now biochemists at ETH Zurich have discovered a novel mechanism that regulates the formation of these organelles. This has laid the foundation for more targeted research into diseases such as Alzheimer’s ... more

    Artificial intelligence improves biomedical imaging

    ETH researchers use artificial intelligence to improve quality of images recorded by a relatively new biomedical imaging method. This paves the way towards more accurate diagnosis and cost-effective devices. Scientists at ETH Zurich and the University of Zurich have used machine learning me ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE