18-Apr-2019 - Max-Planck-Institut für Polymerforschung

Printing nanoparticle shapes for medical applications

Personal drug delivery or nano-robotic systems could be a key concept for future medical applications. In this context, scientists around David Ng (Department of Prof. Tanja Weil) of the Max Planck Institute for Polymer Research (MPI-P) have recently developed a technology to customize the shapes of polymers and polymeric nanoparticles using DNA. In both 2D and 3D, precise patterns of structures composed of biocompatible polymer materials can be easily designed and constructed on a template.

In the range of a millionth of a millimeter, the size range of a virus, synthetic nanomaterials are anticipated to be the next milestone in medical technology. Particles of this size are capable to maneuver well within the human body while escaping removal by the kidney. Be it the “magic bullet” drug or the construction of “nano-machines”, the primary limitation is the capability for scientists to manipulate material shapes within this size regime. Without a framework to customize and control the structure, these frontiers can rapidly reach a developmental bottleneck.

Using DNA as a mold and dopamine/poly(ethylene glycol) as the material, scientists of the MPI-P have developed a technology to fabricate different polymeric shapes at a resolution that was deemed exceedingly difficult in nanotechnology. The nontoxic poly(ethylene glycol) is already widely used in cosmetics or medical applications, and dopamine is a neurotransmitter naturally found in the human body. Using these biocompatible components, a prototype to print both 2D and 3D polymeric nanoparticles with different patterns has become possible.

The scientists derived the technique from DNA origami, a method which weaves strands of DNA into distinct shapes. They created rectangular sheets of DNA measuring 100 nm by 70 nm and added molecular anchors that act as seeds for polymers to grow. As these anchors can be aligned in any pattern on the DNA sheet, the shape of the polymer growth can be imprinted based on the arrangement. As a proof of concept, polymer structures like lines and crosses were molded from the DNA/anchor positions on the origami and were released from the mold in the final step.

Using this technology as a basis, the scientists went a step further by rolling the DNA rectangle into a tube, making the positioning of the anchors possible in 3D. Using this tube model, they patterned the inner contour with polydopamine while decorating the outer surface with poly(ethylene glycol) in a stepwise process. In this way, they have demonstrated that the inner and outer features of the tube can be customized independently, giving rise to a true 3D engineering capability to manufacture precision components for nano-machines.

In the future, the scientists plan to work with experts in the medical field to fill drugs into these synthetic nanoshapes, whereby depending on the shape, each transports differently in the human body. The aim is to understand and apply the influence of shape and position of biologically active molecules to create a new generation of nanomedicine.

Facts, background information, dossiers
  • nanomaterials
  • nanotechnology
  • nanoparticles
  • nanomachines
  • nanomedicine
More about MPI für Polymerforschung
  • News

    Green wave for “gene cabs”

    Viruses help researchers to introduce genes into cells so that they can produce active pharmaceutical ingredients, for example. Special peptides stimulate the process. Until now, however, the efficiency increase was poorly understood. A team of researchers from the MPI for Polymer Research, ... more

    Ice-free in icy worlds: Special shell protects scallop from ice build-up

    A team of scientists led by Konrad Meister, professor at the University of Alaska Southeast and group leader at the Max Planck Institute for Polymer Research, has now studied an Antarctic scallop species that opposes the icing process with the help of its shell surface. Due to their special ... more

    "Cool" Bacteria

    Because of mild winters, ski resorts produce artificial snow to supplement the natural snowfall or extend the ski-season. Ice-nucleating proteins, extracted from the bacterium Pseudomonas syringae, can make ice better than any other known material and are already used in snow making. Resear ... more

More about Max-Planck-Gesellschaft
  • News

    Molecules boosting plant immunity identified

    Two studies published in the journal Science by researchers at the Max Planck Institute for Plant Breeding Research in Cologne, Germany in collaboration with colleagues in China have discovered natural cellular molecules that drive critical plant immune responses. These compounds have all t ... more

    Case solved: the biosynthesis of strychnine elucidated

    A research team at the Max Planck Institute for Chemical Ecology in Jena disclosed the complete biosynthetic pathway for the formation of strychnine in the plant species Strychnos nux-vomica (poison nut). The researchers identified all genes involved in the biosynthesis of strychnine and ot ... more

    How to find marker genes in cell clusters

    The thousands of cells in a biological sample are all different and can be analyzed individually, cell by cell. Based on their gene activity, they can be sorted into clusters. But which genes are particularly characteristic of a given cluster, i.e. what are its “marker genes”? A new statist ... more

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. more

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? more

    Chaperones - folding helpers in the cell

    Nothing works without the correct form: For most proteins, there are millions of ways in which these molecules, composed of long chains of amino acids, can be folded - but only one way is the right one. Researchers in the department "Cellular Biochemistry" at the Max Planck Institute for Bi ... more

  • Research Institutes

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    The research institutes of the Max Planck Society perform basic research in the interest of the general public in the natural sciences, life sciences, social sciences, and the humanities. In particular, the Max Planck Society takes up new and innovative research areas that German universiti ... more