18-Apr-2019 - Max-Planck-Institut für Polymerforschung

Printing nanoparticle shapes for medical applications

Personal drug delivery or nano-robotic systems could be a key concept for future medical applications. In this context, scientists around David Ng (Department of Prof. Tanja Weil) of the Max Planck Institute for Polymer Research (MPI-P) have recently developed a technology to customize the shapes of polymers and polymeric nanoparticles using DNA. In both 2D and 3D, precise patterns of structures composed of biocompatible polymer materials can be easily designed and constructed on a template.

In the range of a millionth of a millimeter, the size range of a virus, synthetic nanomaterials are anticipated to be the next milestone in medical technology. Particles of this size are capable to maneuver well within the human body while escaping removal by the kidney. Be it the “magic bullet” drug or the construction of “nano-machines”, the primary limitation is the capability for scientists to manipulate material shapes within this size regime. Without a framework to customize and control the structure, these frontiers can rapidly reach a developmental bottleneck.

Using DNA as a mold and dopamine/poly(ethylene glycol) as the material, scientists of the MPI-P have developed a technology to fabricate different polymeric shapes at a resolution that was deemed exceedingly difficult in nanotechnology. The nontoxic poly(ethylene glycol) is already widely used in cosmetics or medical applications, and dopamine is a neurotransmitter naturally found in the human body. Using these biocompatible components, a prototype to print both 2D and 3D polymeric nanoparticles with different patterns has become possible.

The scientists derived the technique from DNA origami, a method which weaves strands of DNA into distinct shapes. They created rectangular sheets of DNA measuring 100 nm by 70 nm and added molecular anchors that act as seeds for polymers to grow. As these anchors can be aligned in any pattern on the DNA sheet, the shape of the polymer growth can be imprinted based on the arrangement. As a proof of concept, polymer structures like lines and crosses were molded from the DNA/anchor positions on the origami and were released from the mold in the final step.

Using this technology as a basis, the scientists went a step further by rolling the DNA rectangle into a tube, making the positioning of the anchors possible in 3D. Using this tube model, they patterned the inner contour with polydopamine while decorating the outer surface with poly(ethylene glycol) in a stepwise process. In this way, they have demonstrated that the inner and outer features of the tube can be customized independently, giving rise to a true 3D engineering capability to manufacture precision components for nano-machines.

In the future, the scientists plan to work with experts in the medical field to fill drugs into these synthetic nanoshapes, whereby depending on the shape, each transports differently in the human body. The aim is to understand and apply the influence of shape and position of biologically active molecules to create a new generation of nanomedicine.

Facts, background information, dossiers
  • nanomaterials
  • nanotechnology
  • nanoparticles
  • nanomachines
  • nanomedicine
More about MPI für Polymerforschung
  • News

    "Make two out of one" - Division of Artificial Cells

    The success of life on earth is based on the amazing ability of living cells to divide themselves into two daughter cells. During such a division process, the outer cell membrane has to undergo a series of morphological transformations that ultimately lead to membrane fission. Scientists at ... more

    How graphene nanoparticles improve the resolution of microscopes

    Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute ... more

    Nanodiamonds in the brain

    The recording of images of the human brain and its therapy in neurodegenerative diseases is still a major challenge in current medical research. The so-called blood-brain barrier, a kind of filter system of the body between the blood system and the central nervous system, constrains the sup ... more

More about Max-Planck-Gesellschaft
  • News

    Circular RNA makes fruit flies live longer

    Ribonucleic acid, or RNA, is part of our genetic code and present in every cell of our body. The best known form of RNA is a single linear strand, of which the function is well known and characterized. But there is also another type of RNA, so-called “circular RNA”, or circRNA, which forms ... more

    Neandertal genes in the petri dish

    Protocols that allow the transformation of human induced pluripotent stem cell (iPSC) lines into organoids have changed the way scientists can study developmental processes and enable them to decipher the interplay between genes and tissue formation, particularly for organs where primary ti ... more

    The relationship of proteins

    Proteins control life as one of the most important biomolecules - as enzymes, receptors, signal or structural building blocks. Researchers at the Max Planck Institute (MPI) of Biochemistry have for the first time uncovered the proteomes of 100 different organisms. The selected specimens com ... more

  • Videos

    Epigenetics - packaging artists in the cell

    Methyl attachments to histone proteins determine the degree of packing of the DNA molecule. They thereby determine whether a gene can be read or not. In this way, environment can influence the traits of an organism over generations. more

    Biomaterials - patent solutions from nature

    Animals and plants can produce amazing materials such as spider webs, wood or bone using only a few raw materials available. How do they achieve this? And what can engineers learn from them? more

    Chaperones - folding helpers in the cell

    Nothing works without the correct form: For most proteins, there are millions of ways in which these molecules, composed of long chains of amino acids, can be folded - but only one way is the right one. Researchers in the department "Cellular Biochemistry" at the Max Planck Institute for Bi ... more

  • Research Institutes

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    The research institutes of the Max Planck Society perform basic research in the interest of the general public in the natural sciences, life sciences, social sciences, and the humanities. In particular, the Max Planck Society takes up new and innovative research areas that German universiti ... more