My watch list
my.bionity.com  
Login  

Optic nerve



Nerve: Optic nerve
The left optic nerve and the optic tracts.
Optic nerve leaving the back of a calf eye (from dissection).
Latin nervus opticus
Gray's subject #197 882
MeSH Optic+Nerve

The optic nerve, also called cranial nerve II, is the nerve that transmits visual information from the retina to the brain.

Additional recommended knowledge

Contents

Anatomy

The optic nerve is the second of twelve paired cranial nerves but is considered to be part of the central nervous system as it is derived from an outpouching of the diencephalon during embryonic development. Consequently, the fibers are covered with myelin produced by oligodendrocytes rather than the Schwann cells of the peripheral nervous system. Similarly, the optic nerve is ensheathed in all three meningeal layers (dura, arachnoid, and pia mater) rather than the epineurium, perineurium, and endoneurium found in peripheral nerves. This is an important issue, as fiber tracks of the mammalian central nervous system (as opposed to the peripheral nervous system) are incapable of regeneration and hence optic nerve damage produces irreversible blindness. The fibers from the retina run along the optic nerve to nine primary visual nuclei in the brain, from whence a major relay inputs into the primary visual cortex.

The optic nerve is composed of retinal ganglion cell axons and support cells. It leaves the orbit (eye) via the optic canal, running postero-medially towards the optic chiasm where there is a partial decussation (crossing) of fibers from the temporal visual fields of both eyes. Most of the axons of the optic nerve terminate in the lateral geniculate nucleus from where information is relayed to the visual cortex. Its diameter increases from about 1.6 mm within the eye, to 3.5 mm in the orbit to 4.5 mm within the cranial space. The optic nerve component lengths are 1 mm in the globe, 25 mm in the orbit, 9 mm in the optic canal and 16 mm in the cranial space before joining the optic chiasm. There, partial decussation occurs and about 53% of the fibers cross to form the optic tracts. Most of these fibers terminate in the lateral geniculate body.

From the lateral geniculate body, fibers of the optic radiation pass to the visual cortex in the occipital lobe of the brain. More specifically, fibers carrying information from the contralateral superior visual field traverse Meyer's loop to terminate in the lingual gyrus below the calcarine fissure in the occipital lobe, and fibers carrying information from the contralateral inferior visual field terminate more superiorly.

Physiology

The optic nerve contains 1.2 million nerve fibers. This number is low compared to the roughly 100 million photoreceptors in the retina,[1] and implies that substantial pre-processing takes place in the retina before the signals are sent to the brain through the optic nerve.[citation needed]

The eye's blind spot is a result of the absence of retina where the optic nerve leaves the eye. This is because there are no photoreceptors in this area.

Role in disease

Damage to the optic nerve typically causes permanent and potentially severe loss of vision, as well as an abnormal pupillary reflex, which is diagnostically important. The type of visual field loss will depend on which portions of the optic nerve were damaged. Generally speaking:

  • Damage before the optic chiasm causes loss of vision in the visual field of the same side only.
  • Damage in the chiasm causes loss of vision laterally in both visual fields (bitemporal hemianopia). It may occur in large pituitary adenomata.
  • Damage after the chiasm causes loss of vision on one side but affecting both visual fields: the visual field affected is located on the opposite side of the lesion.

Injury to the optic nerve can be the result of congenital or inheritable problems like Leber's Hereditary Optic Neuropathy, glaucoma, trauma, toxicity, inflammation, ischemia, infection (very rarely), or compression from tumors or aneurysms. By far, the three most common injuries to the optic nerve are from glaucoma, optic neuritis (especially in those younger than 50 years of age) and anterior ischemic optic neuropathy (usually in those older than 50).

Glaucoma is a group of diseases involving loss of retinal ganglion cells causing optic neuropathy in a pattern of peripheral vision loss, initially sparing central vision.

Optic neuritis is inflammation of the optic nerve. It is associated with a number of diseases, most notably multiple sclerosis.

Anterior Ischemic Optic Neuropathy is a particular type of infarct that affects patients with an anatomical predisposition and cardiovascular risk factors.

Ophthalmologists, particularly those sub specialists who are neuro-ophthalmologists, are often best suited to diagnose and treat diseases of the optic nerve.

The International Foundation for Optic Nerve Diseases IFOND sponsors research and information on a variety of optic nerve disorders and may provide general direction.

Additional images

References

  1. ^ Jonas JB, Schneider U, Naumann GOH (1992) Count and density of human retinal photoreceptors. Graefe's Arch Clin Exp Ophthalmol 230:505-510.
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Optic_nerve". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE