My watch list
my.bionity.com  
Login  

'Druggable' cancer target found in pathway regulating organ size

Finding caps more than a decade of research on 'Hippo' pathway

21-Nov-2018

Wei-Chien Yuan/Boston Children's Hospital

A small molecule that inactivates NUAK2 reduces the number of cancerous cells in the mouse liver.

It's known that cancer involves unchecked cell growth and that a biological pathway that regulates organ size, known at the Hippo pathway, is also involved in cancer. It's further known that a major player in this pathway, YAP, drives many types of tumors. Now, researchers at Boston Children's Hospital have solved an ongoing problem: how to turn this knowledge into a practical drug target. In a study they show that YAP acts largely through another downstream player called NUAK2 that can readily be inactivated with a small molecule.

"The Hippo pathway, and especially YAP, has been hard to target with drugs," says senior study author Fernando Camargo, PhD, of Boston Children's Stem Cell Research program. "This is the first demonstration of a 'druggable' molecule that could be targeted in any type of tumor driven by YAP."

Although the study involved liver cancer, the findings could be relevant to many YAP-driven oral cancers, head and neck squamous carcinomas, pancreatic cancers, ovarian cancers and squamous cell skin cancers, Camargo adds. The team hopes to test that in future studies.

Finding a druggable cancer target

YAP is a transcription factor, a type of target that's been considered "undruggable," since transcription factors lack structural features that enable a drug to bind to them. But YAP in turn regulates the activity of many other genes, and Wei-Chien Yuan, PhD, in the Camargo lab set out to identify these genes, in hopes of finding something else to target.

Using human liver cancer cell lines and a mouse model of liver cancer, Yuan combined several assays to zero in on what downstream genes YAP influences. She found 14, then narrowed her search to kinases, enzymes that are especially amenable to being targeted with drugs. Just one emerged: NUAK2.

Further experiments showed that NUAK2 (also known as sucrose nonfermenting [SNF1]-like kinase, or SNARK) is critical for YAP-driven growth in human cancer cell lines and for liver cancer proliferation in mouse models.

Finally, they showed that a small-molecule compound that inactivates NUAK2 strongly curbed YAP-driven cancer cell proliferation and liver overgrowth.

Targeting NUAK2 has an added benefit, says Camargo, who is also affiliated with the Dana-Farber/Boston Children's Cancer and Blood Disorders Center. "It feeds back to further activate YAP itself, so inhibiting NUAK2 further decreases activity of YAP, which is exactly what you want."

Future plans

Yuan and her colleagues now hope to extend their findings.

"We know that inhibiting NUAK2 works in liver cancer. We now need to see if same mechanism is in play in other cancers," says Camargo.

They also plan to modify their small molecule, originally synthesized in the lab of Nathanael Gray, PhD, at the Dana-Farber Cancer Institute.

"We want to see if we can make the compound more selective," says Yuan, first author on the paper. "It has other nonspecific targets, so we need to modify it to make it usable."

A growth mindset

The story of YAP began over a decade ago with the discovery of the size-control pathway Hippo - so named because manipulating it in fruit flies led to growth of enormous tumors, oversized eyes and wings eight times the normal size. Larger animals with defects in Hippo were also found to have overgrown body parts, and Camargo showed that activating YAP can quadruple the size of a mouse liver. Hippo and YAP later became of interest to cancer researchers.

Facts, background information, dossiers
  • cell proliferation
  • drug targets
  • cell growth
  • drugs
More about Harvard University
  • News

    Know your enemy

    To fight your enemies, it helps to know their weaknesses. And, the more specific your knowledge, the easier it is to undermine their defenses. If your enemy sits safe behind a giant wall, for example, its valuable to know how your foe constructed it, what materials they used, and what crack ... more

    A golden ticket to faster muscle recovery

    Anyone who has ever torn or injured a muscle knows that swelling, redness, and pain soon follow the injury: classic signs of inflammation. Inflammation is the body’s natural response to promote healing, but prolonged, excess inflammation in the muscles can contribute to the progression of c ... more

    A telephone for your microbiome

    More than 1,000 species of bacteria have been identified in the human gut, and understanding this incredibly diverse "microbiome" that can greatly impact health and disease is a hot topic in scientific research. Because bacteria are routinely genetically engineered in science labs, there is ... more

  • Videos

    A diamond radio receiver

    Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences have made the world’s smallest radio receiver – built out of an assembly of atomic-scale defects in pink diamonds. This tiny radio — whose building blocks are the size of two atoms — can withstand extrem ... more

    Timing Cancer Treatment

    There may be an ideal waiting period for delivering multiple cancer drugsResearchers led by members of the Department of Systems Biology at Harvard Medical School had been studying how silencing MDMX, an oncogene, affected the dynamics of p53, a natural tumor suppressor, in cancer cells whe ... more

    Chemical Exposures and the Brain: The Flint Water Crisis and More

    The water crisis gripping Flint, Michigan has exposed thousands of children to unsafe lead levels, triggering a federal emergency declaration and national conversation about basic public health protections. Lead can be toxic to the brain, and children can be particularly vulnerable. However ... more

  • Universities

    Harvard University

    Harvard University is devoted to excellence in teaching, learning, and research, and to developing leaders in many disciplines who make a difference globally. Harvard faculty are engaged with teaching and research to push the boundaries of human knowledge. more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE