24-Apr-2015 - Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch

Novel regulator inhibits toxic protein aggregates in Huntington's disease

Huntington's disease is a neurodegenerative disorder characterized by huntingtin protein aggregates in a patient's brain, but how these aggregates form is not well understood. In a study published in Genome Research, researchers developed a novel computational strategy to identify interaction partners of the huntingtin protein and discovered a novel factor that suppresses misfolding and aggregation.

Huntington's disease is caused by an expansion of glutamine residues in the huntingtin protein, altering its function and ultimately resulting in toxic aggregation of huntingtin fragments in neurons. Proteins that interact with the glutamine-expanded huntingtin protein are thought to strongly influence the formation of the aggregates.

"The challenge that remains is if there are many proteins interacting with the huntingtin protein, we cannot easily determine which are relevant for disease and which are not," said Erich Wanker from Max Delbrück Center for Molecular Medicine and corresponding author of the study.

By combining large datasets of protein-protein interactions and filtering by brain-specific gene expression in patients with and without Huntington's disease, the scientists narrowed potential interactors to 13 candidates, including 7 that are known targets in Huntington's disease. 

The researchers followed up on one candidate, CRMP1, because of its expression in brain and not elsewhere in the body. Using cell-based model systems and Drosophila, they found CRMP1 overexpression reduces hungtingtin aggregation and cellular toxicity, while reduced CRMP1 results in increased aggregation and toxicity. In cell-free assays, CRMP1 slows the spontaneous self-assembly of huntingtin fragments with glutamine expansions.

"CRMP1 was not regarded as a therapeutic target so far, now it is worth exploring as a potential target," said Wanker.

Facts, background information, dossiers
More about MDC
  • News

    Getting to the heart of an enzyme

    A team led by Oliver Daumke at the MDC has determined the three-dimensional structure of the NatC acetyltransferase in an article published in Nature Communications. This enzyme modifies cell proteins to enable them to perform their functions correctly. In cancer cells, however, NatC is oft ... more

    Towards a cell-based interceptive medicine in Europe

    Hundreds of researchers, clinicians, industry leaders and policy makers from all around Europe are united by a vision of how to revolutionize healthcare. In a perspective in Nature and the LifeTime Strategic Research Agenda they now present a roadmap of how to leverage the latest scientific ... more

    Enzyme prisons

    In the journal Cell, the group explains how cells are able to switch on completely different signaling pathways using only one signaling molecule: the nucleotide cAMP. To achieve this, the molecule is virtually imprisoned in nanometer-sized spaces. There are up to a hundred different recept ... more

  • Research Institutes

    Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch


More about Cold Spring Harbor Laboratory Press