28-May-2020 - Leibniz-Institut für Neurobiologie

Cleaning craze in the brain

Synaptic protein waste" was collected more quickly when the presynaptic protein bassoon is missing

Synapses consist of hundreds of different proteins. For correct transmission of brain signals, their building blocks must constantly be checked for functionality and replaced by new ones. A team of researchers from the Leibniz Institute of Neurobiology Magdeburg, the German Centre for Neurodegenerative Diseases and the Charité Hospital in Berlin has investigated how the functioning of synapses in the brain is affected when the presynaptic protein bassoon is missing. They found out that the recycling process of synaptic proteins is much faster because an enzyme called Parkin is activated, which plays an important role in Parkinson's disease.

Previously, it was known that Parkin loss of function leads to Parkinson's disease. When Parkin is non-functional, aggregates of proteins accumulate in brain tissue that can no longer be degraded, which - as always when too much waste accumulates - impairs normal functions and eventually leads to complete functional failure due to cell death.

Cleaning up in the synapse

The team of authors around Dr. Carolina Montenegro and Prof. Dr. Eckart Gundelfinger from LIN as well as Dr. Sheila Hoffmann-Conaway and Prof. Dr. Craig C. Garner from the DZNE shows in the new study that exactly the opposite happens after the Bassoon protein is switched off: the "synaptic protein waste" was collected more quickly and the active proteins were younger than in the comparable controls. To find this out, the researchers added colour-coded tags to one of the proteins to be disposed of, called SV2. These tags change colour with age and act as a marker for the neuronal disposal processes. The SV2 protein gets incorporated into synaptic vesicles, the small containers that contain the neurotransmitters which are released during synaptic transmission. The ageing process of the active protein can be observed through the colour change. Under the electron microscope, further indications of increased disposal of cellular waste were found - a process known as autophagy. For example, a larger number of "waste containers", so-called autophagosomes could be detected in synapses when Bassoon is missing. The authors were able to show that in synapses without Bassoon, several proteins were increasingly marked for degradation. However, if the protein Parkin, which is defective in Parkinson's disease, was switched off, this process could be counteracted.

What do we learn from these experiments?

Synapses with altered Bassoon protein are weaker and cannot adapt so easily to changes, a feature which is essential for brain plasticity. "With our experiments, we better understand the processes in the synapses that are essential for the correct functioning of a healthy brain," says Dr. Carolina Montenegro. "All important brain processes, perceiving, thinking, learning, remembering, planning of actions, i.e. the entire information processing, are determined by synapses. With increasing age, the way they function changes, partly because such waste disposal processes no longer function properly. Particularly in brain diseases such as Alzheimer's or Parkinson's disease, disturbances in the balance between protein supply and disposal contribute to cognitive problems. In order to understand these diseases, and perhaps even to be able to intervene in a more targeted manner, we need to know exactly what goes wrong when a protein or its gene functions incorrectly or not at all."

Facts, background information, dossiers
More about Leibniz-Institut für Neurobiologie
More about Deutsches Zentrum für Neurodegenerative Erkrankungen
More about Charité
  • News

    SARS-CoV-2: Estimating infectiousness

    What started as the preliminary analysis of routine laboratory data has since evolved into the largest-ever study of viral load levels in patients with SARS-CoV-2. A team of researchers from Charité – Universitätsmedizin Berlin have now analyzed the PCR samples of more than 25,000 persons w ... more

    Low levels of a simple sugar – a new biomarker for severe MS?

    Researchers from the ECRC in Berlin, together with scientists from the United States and Canada, have discovered a sugar molecule whose levels are reduced in the blood of patients with particularly severe multiple sclerosis. Their discovery could pave the way for a new therapeutic approach, ... more

    AI-based analysis system for the diagnosis of breast cancer

    Researchers at TU Berlin and Charité – Universitätsmedizin Berlin as well as the University of Oslo have developed a new tissue-section analysis system for diagnosing breast cancer based on artificial intelligence (AI). Two further developments make this system unique: For the first time, m ... more

  • Research Institutes

    Charité - Universitätsmedizin Berlin

    The Charité is one of the largest university hospitals in Europe. Here, 3800 doctors and scientists heal, do research and teach at the top international level. More than half of the German Nobel Prize winners in medicine and physiology come from the Charité, among them Emil von Behring, Ro ... more